Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T06:01:02.175Z Has data issue: false hasContentIssue false

Interfacial Defects Induced by Silicidation and Effects of H-Termination at Metal/Silicon Contacts

Published online by Cambridge University Press:  15 February 2011

Shigeaki Zaima
Affiliation:
Department of Crystalline Materials Science, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-01, Japan
Yukio Yasuda
Affiliation:
Department of Crystalline Materials Science, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-01, Japan
Get access

Abstract

We have investigated crystallographic structures and electrical properties at the interfaces of transition metals such as Ti, Zr, Hf and V and Si(100), from the viewpoint of an application to ohmic contacts in future ULSI's with low contact resistivity and high reliability. We have achieved very low contact resistivities of 3−5×10−8 Ωcm2 for Zr/ and Hf/n+-Si(100) contacts and 1−2×10-7 Ωcm2 for p+-Si at 400–600°C. It is found that the silicidation reaction in this temperature range brings about the formation of deep levels associated with vacancies in Hf/Si and with metal atoms in V/Si. This difference is considered to be related to that in the silicide formation process between these systems. Furthermore, an anomalous electrical characteristics observed for Hf/p-Si contacts has been found to be markedly improved by using a H-termination treatment of Si surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dennard, R. H., Gaensslen, F. H., Yu, H. N., Rideout, V. L., Bassous, E. and LeBlanc, A. R., IEEE J. Solid-State Circuits, SC–9, 256 (1974).Google Scholar
2. Yamauchi, T., Zaima, S., Mizuno, K., Kitamura, H., Koide, Y., and Yasuda, Y., Appl. Phys. Lett., 57, 1105 (1990).Google Scholar
3. Zaima, S., Yamauchi, T., Koide, Y., and Yasuda, Y., Appl. Surf. Sci., 70/71, 624 (1993).Google Scholar
4. Zaima, S., Wakai, N., Yamauchi, T., and Yasuda, Y., J. Appl. Phys., 74, 6703 (1993).Google Scholar
5. Yasuda, Y. and Zaima, S., in Proc. Advanced Metallization for ULSI Applications in 1993, San Diego, edited by Favreau, D. P., Diamand, Y. S. and Horiike, Y., pp. 191, Materials Research Society (1994).Google Scholar
6. Yamauchi, T., Zaima, S., Mizuno, K., Kitamura, H., Koide, Y., and Yasuda, Y., J. Appl. Phys., 69, 7050 (1991).Google Scholar
7. Takahagi, T., Nagai, I., Ishitani, A., Kuroda, H., Nagasawa, Y., J. Appl. Phys., 64, 3516 (1988).Google Scholar
8. Zaima, S., Kojima, J., Hayashi, M., Ikeda, H., Iwano, H. and Yasuda, Y., Jpn. J. Appl. Phys., 34, 742 (1995).Google Scholar
9. Proctor, S. J. and Linholm, L. W., IEEE Electron Device Lett., EDL–3, 294 (1982).Google Scholar
10. Chang, C. Y. and Sze, S. M., Solid-State Electron., 13, 727 (1970).Google Scholar
11. Yamauchi, T., Zaima, S., Kataoka, M., Koide, Y., and Yasuda, Y., Appl. Surf. Sci., 56–58, 545 (1992).Google Scholar
12. Brotherton, S. D. and Bradley, P., J. Appl. Phys., 53, 5720 (1982).Google Scholar
13. Brotherton, S. D., Parker, G. J. and Gill, A., J. Appl. Phys., 54, 5112 (1983).Google Scholar
14. Chantre, A. and Kimerling, L. C., Appl. Phys. Lett., 48, 1000 (1986).Google Scholar
15. Zaima, S., Kosaka, M., Tomioka, S. and Yasuda, Y., in Proc. 1st Int. Symp. Control of Semiconductor Interfaces, edited by Ohdomari, I., Oshima, M. and Hiraki, A., pp. 57, Elsevier Science B. V. (1994).Google Scholar
16. Weber, E. R., Appl. Phys. A, 30, 1 (1983).Google Scholar
17. Sadoh, T. and Nakashima, H., Appl. Phys. Lett., 58, 1653 (1991).Google Scholar
18. Hayashi, M., Kojima, J., Zaima, S., Ikeda, H. and Yasuda, Y. (unpublished).Google Scholar
19. Tu, K. N., and Mayer, J. W., in Thin films - Interdiffusion and Reactions edited by Poate, J. M., Tu, K. N. and Mayer, J. W., pp. 359, John Wiley & Sons (1978).Google Scholar
20. Yamauchi, T., Kitamura, H., Wakai, N., Zaima, S., Koide, Y. and Yasuda, Y., J. Vac. Sci. Technol. A, 11, 2619 (1993).Google Scholar
21. Gräf, D., Grundner, M. and Schulz, R., J. Vac. Sci. & Technol. A, 7, 808 (1989).Google Scholar
22. Takahagi, T., Ishitani, A., Kuroda, H. and Nagasawa, Y., J. Appl. Phys., 69, 803 (1991).Google Scholar
23. Schaefer, J. A., Stucki, F., Anderson, J. A., Lapeyre, G. J. and Göpel, W., Surf. Sci., 140, 207 (1984).Google Scholar
24. Schaefer, J. A. and Göpel, W., Surf. Sci., 155, 535 (1984).Google Scholar
25. Stroscio, J. A., Bare, S. R. and Ho, W., Surf. Sci., 154, 35 (1985).Google Scholar
26. Nishijima, M., Yoshinobu, J., Tsuda, H. and Onchi, M., Surf. Sci., 192, 383 (1987).Google Scholar
27. Sze, S. M., Physics of Semiconductor Devices, 2nd ed., Chap. 5 (John Wiley & Sons, New York, 1981).Google Scholar
28. Bains, S. K. and Banbury, P. C., J. Phys. C: Solid State Phys., 18, 1109 (1985).Google Scholar
29. Mitic, A., Sato, T., Nishi, H. and Hashimoto, H., Appl. Phys. Lett., 37, 727 (1980).Google Scholar
30. Donelly, J. P. and Milnes, A. G., Proc. IEEE, 113, 1469 (1966).Google Scholar
31. Riben, A. R. and Feucht, D. L., Solid-State Electron., 9, 1055 (1966).Google Scholar