No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
GeH4 is thermally cracked over a hot filament depositing 0.7–15 ML Ge onto 2–7 nm SiO2/Si(100) at substrate temperatures of 300–970 K. Ge, GeHx, GeO, and GeO2 desorption is monitored through temperature programmed desorption in the temperature range 300–1000 K. Ge bonding changes are analyzed during annealing from 300–1000 K with X-ray photoelectron spectroscopy (XPS). Low temperature desorption features are attributed to GeO and GeH4. No GeO2 desorption is observed, but GeO2 decomposition to Ge through high temperature pathways is seen above 700 K. Germanium oxidization results from Ge etching of the oxide substrate, which is demonstrated through XPS. Ge nanoparticle formation on SiO2 is demonstrated using the agglomeration process. With these results, explanations for the difficulties of conventional chemical vapor deposition to produce Ge nanocrystals on SiO2 surfaces are proposed.