Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T13:59:02.641Z Has data issue: false hasContentIssue false

InAs and InP Quantum Dot Molecules and their Potentials for Photovoltaic Applications

Published online by Cambridge University Press:  01 February 2011

Wipakorn Jevasuwan
Affiliation:
[email protected], Chulalongkorn University, Department of Electrical Engineering, Faculty of Engineering, Phyathai Road, Bangkok 10330, Thailand
Supachok Thainoi
Affiliation:
[email protected], Chulalongkorn University, Department of Electrical Engineering, Faculty of Engineering, Phyathai Road, Bangkok, 10330, Thailand
Songphol Kanjanachuchai
Affiliation:
[email protected], Chulalongkorn University, Department of Electrical Engineering, Faculty of Engineering, Phyathai Road, Bangkok, 10330, Thailand
Somchai Ratanathammaphan
Affiliation:
[email protected], Chulalongkorn University, Department of Electrical Engineering, Faculty of Engineering, Phyathai Road, Bangkok, 10330, Thailand
Somsak Panyakeow
Affiliation:
[email protected], Chulalongkorn University, Department of Electrical Engineering, Faculty of Engineering, Phyathai Road, Bangkok, 10330, Thailand
Get access

Abstract

Self-assembled InAs and InP quantum dot molecules (QDMs) are grown on GaAs substrates using different molecular beam epitaxial (MBE) growth techniques. The structural and optical properties of the two types of QDMs are then compared and reported. Multi-stack high-density (1012 cm-2) InAs QDMs are grown and when inserted into GaAlAs/GaAs heterostructure results in high-efficiency solar cells. As an alternative to InAs, InP QDMs are grown by droplet epitaxy of In and annealing under P2 pressure. While the number of quantum dots per QDM in the case of InP is in the range of 10 to 12 dots, those in the case of InAs can be smaller or much larger depending on exact growth parameters prior to QD growth. Photoluminescence (PL) measurements show that while InAs QDMs provide room-temperature optical output that peaks at 1.1 eV, InP QDMs have no PL output, possibly due to crystal defects created by low-temperature processing associated with droplet epitaxy. Discussion on the practicality of our QDMs as material for intermediate band solar cells is also provided.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Feteha, M.Y., Eldallal, G.M., Renewable Energy 28, 1097 (2003).Google Scholar
2. Mazzer, M., Bamham, K.W.J., Ballard, I.M., Bessiere, A., Ioannindes, A., Johnson, D.C., Lynch, M.C., Tibbits, T.N.D., Roberts, J.S., Hill, G., Calder, C., Thin solid films 511512, 76 (2006).Google Scholar
3. Bett, A.W., Adelhelm, R., Agert, C., Beckert, R., Dimroth, F., Schubert, U., Solar Energy Materials & Solar cells 66, 541 (2001).Google Scholar
4. Kinsey, G.S., Sherif, R. A., Cotal, H. L., Pien, P., King, R. R., Labios, E. L., Wan, K. F., Haddad, M., Lacey, J. M., Fetzer, C. M., Karam, N. H., Verlinden, P., Lasich, J., presented at the 4th WCPEC, Hawaii, 2006.Google Scholar
5. Dimroth, F., Pehavz, G., Wittstadt, U., Hacker, B., Bett, A., presented at the 4th WCPEC, Hawaii, 2006.Google Scholar
6. Sherif, R. A., King, R. R., Kinsey, G. S., Cotal, H. L., Fetzer, C. M., Pien, P., Hebert, P., Lacey, J., Paredes, A., Glem, G., Brandt, R., Cavicchi, T., Peacock, J., Karam, N., presented at the 21st European PVSEC, Dresden, Germany, 2006.Google Scholar
7. Algora, C., Rey-Stolle, I., Galiana, B., Goonzalez, J. R., Baudrit, M., Garcia, I., III-Vs Review 18, 40 (2005).Google Scholar
8. Markvart, T., Solar Electricity, 2nd ed. (John Willy & Sons Publishers, Chichester, 2000) p.187.Google Scholar
9. Takamoto, T., Yamaguchi, M., Taylor, S. J., Yang, M., Ikeda, E., Kurita, H., Solar Energy Material & Solar cells 58, 265 (1999).Google Scholar
10. Cheknane, A., Hilal, H.S., Charles, J.P., Benyoucef, B., Campet, G., Solid State Sciences 8, 556 (2006).Google Scholar
11. Nelson, J., The Physics of Solar Cells, 1st ed. (Imperial College Press Publishers, London, 2003) p.179.Google Scholar
12. Yamakuchi, M., Physica E 14, 84 (2002).Google Scholar
13. Yamakuchi, M., Takamoto, T., Araki, K., Solar Energy Materials & Solar cells 90, 3068 (2006).Google Scholar
14. Yamaguchi, M., Takamoto, T., Araki, K., Ekins-Daukes, N., Solar Energy 79, 78 (2005).Google Scholar
15. Eberl, K., Lipinski, M.O., Manz, Y.M., Winter, W., Jin-Phillipp, N.Y., Schmidt, O.G., Physica E 9, 164 (2001).Google Scholar
16. Finkman, E., Maimon, S., Immer, V., Bahir, G., Schacham, S.E., Gauthier-Lafaye, O., Herriotc, S., Julien, F.H., Gendry, M., Brault, J., Physica E 7, 139 (2000).Google Scholar
17. Okada, Y., Shiotsuka, N., Komiyama, H., Akahane, K., Ohtani, N., presented at the 20th European PVSEC, Barcelona, Spain, 2005.Google Scholar
18. Suraprapapich, S., Kanjanachuchai, S., Thainoi, S., Panyakeow, S., Microlith, J., Microfab., Microsyst. 5, 011008 (2006).Google Scholar
19. Ruangdet, S., Thainoi, S., Kanjanachuchai, S., Panyakeow, S., presented at the 4th WCPEC, Hawaii, 2006.Google Scholar
20. Ruangdet, S., Thainoi, S., Kanjanachuchai, S., Panyakeow, S., presented at the 21st European PVSEC, Dresden, Germany, 2006.Google Scholar
21. Cuadra, L., Marti, A., Luque, A.. Thin solid films 451–452, 593599 (2004).Google Scholar
22. Kurtenbach, A., Eberl, K., Shitara, T., Appl. Phys. Lett. 66, 361 (1995).Google Scholar
23. Moritz, A., Wirth, R., Hangleiter, A., Kurtenbach, A., Eberl, K., Appl. Phys. Lett. 69, 212 (1996).Google Scholar