Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:25:09.605Z Has data issue: false hasContentIssue false

Improved Inversion Channel Mobility in Si-face 4H-SiC MOSFETs by Phosphorus Incorporation Technique

Published online by Cambridge University Press:  01 February 2011

Dai Okamoto
Affiliation:
[email protected], Nara Institute of Science and Technology, Ikoma, Japan
Hiroshi Yano
Affiliation:
[email protected], Nara Institute of Science and Technology, Ikoma, Nara, Japan
Shinya Kotake
Affiliation:
[email protected], Nara Institute of Science and Technology, Ikoma, Nara, Japan
Kenji Hirata
Affiliation:
[email protected], Nara Institute of Science and Technology, Ikoma, Nara, Japan
Tomoaki Hatayama
Affiliation:
[email protected], Nara Institute of Science and Technology, Ikoma, Nara, Japan
Takashi Fuyuki
Affiliation:
Get access

Abstract

We propose a new technique to fabricate 4H-SiC metal–oxide–semiconductor field-effect transistors (MOSFETs) with high inversion channel mobility. P atoms were incorporated into the SiO2/4H-SiC(0001) interface by post-oxidation annealing using phosphoryl chloride (POCl3). The interface state density at 0.2 eV from the conduction band edge was reduced to less than 1 × 1011 cm−2eV−1 by the POCl3 annealing at 1000 °C. The peak field-effect mobility of 4H-SiC MOSFETs on (0001) Si-face processed with POCl3 annealing at 1000 °C was approximately 90 cm2/Vs. The high channel mobility is attributed to the reduced interface state density near the conduction band edge.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yano, H., Kimoto, T., and Matsunami, H., Appl. Phys. Lett. 81, 301 (2002).Google Scholar
2 Li, H., Dimitrijev, S., Harrison, H. B., and Sweatman, D., Appl. Phys. Lett. 70, 2028 (1997).Google Scholar
3 Li, H., Dimitrijev, S., and Harrison, H. B., IEEE Electron Device Lett. 19, 279 (1998).Google Scholar
4 Chung, G. Y., Tin, C. C., Williams, J. R., McDonald, K., Ventra, M. Di, Pantelides, S. T., Feldman, L. C., and Weller, R. A., Appl. Phys. Lett. 76, 1713 (2000).Google Scholar
5 Xu, J. P., Lai, P. T., Chan, C. L., and Cheng, Y. C., Appl. Phys. Lett. 76, 372 (2000).Google Scholar
6 Chung, G. Y., Tin, C. C., Williams, J. R., McDonald, K., Chanana, R. K., Weller, R. A., Pantelides, S. T., Feldman, Leonard C., Holland, O. W., Das, M. K., and Palmour, J. W., IEEE Electron Device Lett. 22, 176 (2001).Google Scholar
7 Jamet, P., Dimitrijev, S., and Tanner, P., J. Appl. Phys. 90, 5058 (2001).Google Scholar
8 McDonald, K., Weller, R. A., Pantelides, S. T., Feldman, L. C., Chung, G. Y., Tin, C. C., and Williams, J. R., J. Appl. Phys. 93, 2719 (2003).Google Scholar
9 Fujihira, K., Miura, N., Shiozawa, K., Imaizumi, M., Ohtsuka, K., and Takami, T., IEEE Electron Device Lett. 25, 734 (2004).Google Scholar
10 Rozen, J., Zhu, X., Ahyi, A. C., Williams, J. R., and Feldman, L. C., Mat. Sci. Forum 645–648, 693, (2010).Google Scholar
11 Gudjonsson, G., Ólafsson, H. Ö., Allerstam, F., Nilsson, P.-Å, Sveinbjörnsson, E. Ö, Zirath, H., Rödle, T., and Jos, R., IEEE Electron Device Lett. 26, 96 (2005).Google Scholar
12 Okamoto, D., Yano, H., Hatayama, T., and Fuyuki, T., Mat. Sci. Forum, 645–648, 495 (2010).Google Scholar
13 Dhar, S., Chen, X. D., Mooney, P. M., Williams, J. R., and Feldman, L. C., Appl. Phys. Lett. 92, 102112 (2008).Google Scholar
14 Yamashita, K., Kitabatake, M., Kusumoto, O., Takahashi, K., Uchida, M., Miyanaga, R., Itoh, H., and Yoshikawa, M., Mat. Sci. Forum. 389–393, 1037 (2002).Google Scholar
15 Okuno, E., Sakakibara, T., Onda, S., Itoh, M., and Uda, T., Phys. Rev. B 79, 113302 (2009).Google Scholar