Published online by Cambridge University Press: 01 February 2011
We propose a new technique to fabricate 4H-SiC metal–oxide–semiconductor field-effect transistors (MOSFETs) with high inversion channel mobility. P atoms were incorporated into the SiO2/4H-SiC(0001) interface by post-oxidation annealing using phosphoryl chloride (POCl3). The interface state density at 0.2 eV from the conduction band edge was reduced to less than 1 × 1011 cm−2eV−1 by the POCl3 annealing at 1000 °C. The peak field-effect mobility of 4H-SiC MOSFETs on (0001) Si-face processed with POCl3 annealing at 1000 °C was approximately 90 cm2/Vs. The high channel mobility is attributed to the reduced interface state density near the conduction band edge.