Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:30:39.505Z Has data issue: false hasContentIssue false

Hrem of Defects in Oxide Superconductors

Published online by Cambridge University Press:  21 February 2011

H. W. Zandbergen
Affiliation:
National Center for HREM, Delft University of Technology, Rotterdamseweg 137, 2628AL Delft, The Netherlands
G. van Tendeloo
Affiliation:
University of Antwerp, RUCA, Groenenborgerlaan 171, Antwerp, Belgium.
Get access

Abstract

A review is given of defects occurring in the superconducting oxides YBa2Cu3O7, (Bi,Tl)2(Sr,Ba)2CanCul+nO6+2n, and Pb2Sr2(Cal-xYx)nCu2+nO6+2n+∂. A number of these defect structures correspond to other thermodynamically stable phases. The observations of these defects have led in several cases to successful synthesis of new superconducting compounds. Defects can effect the superconducting properties, which they can either deteriorate (weak links) or improve (flux pinning). Both effects are considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zandbergen, H.W. et al, Nature 331, 596 (1988)Google Scholar
2. Zandbergen, H.W., Gronsky, R. and Thomas, G., Phys. Stat. Sol. (a) 105, 207 (1988)Google Scholar
3. Li, D.J., et al, Physica C, 156, 204 (1988)Google Scholar
4. Teske, C.L., and Muller-Buschbaum, H., Z. Anorg. Allg. Chem. 379, 234 (1970)Google Scholar
5. Morris, D.E. et al, Physica C 159, 287 (1989)Google Scholar
6. Zandbergen, H.W. and Thomas, G, Phys. Stat Sol (a) 107, 825 (1988)Google Scholar
7. Marshall, A.F., Phys. Rev B 37, 9353 (1988)Google Scholar
8. Bordet, P. et al, Nature 334, 596 (1988)Google Scholar
9. March, P. et al, Nature, 334 141 (1988)Google Scholar
10. Ramesh, R. et al, Science 247, 57 (1990)Google Scholar
11. Zandbergen, H.W. et al, Adv. Ceram. Mater. 2, 688 (1987)Google Scholar
12. Sharma, R. et al, these proceedingsGoogle Scholar
13. Ramesh, R. et al, J. Mater. Res. 5, 704 (1990)Google Scholar
14. Tietz, L.A., J. Mater. Res.. 4.1072 (1989)Google Scholar
15. Zandbergen, H.W. et al, Physica C 166, 255 (1990)Google Scholar
16. Torardi, C.C. et al, Amer. Chem. Symp. Ser. No. 357, 152 (1987)Google Scholar
17. Horowitz, et al, Science 243, 66 (1989)Google Scholar
18. Krekels, T. et al, Physica C, in the pressGoogle Scholar
19. Zandbergen, H.W. et al, Nature 332, 620 (1988)Google Scholar
20. Zandbergen, H.W. et al, Solid State Comm. 66, 397 (1988)Google Scholar
21. Michel, C. et at, Z. Phys. B 68, 421 (1987)Google Scholar
22. Tarascon, J.M. et al, Phys. Rev. B 57, 9882 (1988)Google Scholar
23. Zandbergen, H.W. et al, Appl Phys. A 46, 233 (1988)Google Scholar
24. Beyers, R., et al, Appl. Phys. Lett. A 53, 432 (1988)Google Scholar
25. Subramanian, M.A. et al, Nature 332, 240 (1988)Google Scholar
26. Parkin, S.S. et at, Phys. Rev. Lett. 61, 750 (1988)Google Scholar
27. Verwerft, M. et at, Physica C, 156 607 (1988)Google Scholar
28. Zandbergen, H.W. et al, Physica C 156, 325 (1988)Google Scholar
29. van Tendeloo, G. et al, Appl. Phys. A 48, 153 (1988)Google Scholar
30. Cava, R.J. et al, Nature, 336, 211 (1988)Google Scholar
31. Zandbergen, H.W. et al, Physica C 158, 155 (1988)Google Scholar
32. Zandbergen, H.W. et al, Physica C 159, 81 (1989)Google Scholar
33. Zandbergen, H.W. et al, J. Cryst. Growth 96, 716 (1989)Google Scholar
34. Zandbergen, H.W., and van Tendeloo, G., Phys. Rev B 40, 11300 (1989)Google Scholar
35. Rouillon, T. et al, Physica C 159, 201 (1989)Google Scholar
36. Roas, B., Schultz, L., and Saemann-lschenko, G., Cryogenics, preprintGoogle Scholar