Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T04:43:20.389Z Has data issue: false hasContentIssue false

Hole Drift-Mobility Measurements and Multiple-Trapping in Microcrystalline Silicon

Published online by Cambridge University Press:  21 March 2011

T. Dylla
Affiliation:
Department of Physics, Syracuse University, Syracuse, NY 13244-1130 USA Institut für Photovoltaik, Forschungszentrum Jülich, Jülich, D-52425 Germany
F. Finger
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich, Jülich, D-52425 Germany
E. A. Schiff
Affiliation:
Department of Physics, Syracuse University, Syracuse, NY 13244-1130 USA
Get access

Abstract

We present photocarrier time-of-flight measurements of the hole drift-mobility in microcrystalline silicon samples with a high crystalline volume fraction; typical room-temperature values are about 1 cm2/Vs. Temperature-dependent measurements are consistent with the model of multiple-trapping in an exponential bandtail. While this model has often been applied to amorphous silicon, its success for predominantly crystalline samples is unexpected. The valence bandtail width is 31 meV, which is about 10-20 meV smaller than values reported a-Si:H, and presumably reflects the greater order in the microcrystalline material. The hole band-mobility is about 1 cm2/Vs – essentially the same magnitude as has been reported for electrons and for holes in amorphous silicon, and suggesting that this magnitude is a basic characteristic of mobility-edges, at least in silicon-based materials. The attempt-frequency is about 109 s-1; this value is substantially smaller than the values 1011 - 1012 s-1 typically reported holes in amorphous silicon, but the physical significance of the parameter remains obscure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wyrsch, N., Goerlitzer, M., Beck, N., Meier, J., and Shah, A., in Amorphous Silicon Technology – 1996, edited by Hack, M., Schiff, E. A., Wagner, S., Schropp, R., and Matsuda, A. (Materials Research Society Symposium Proceedings Vol. 420, Pittsburgh, 1996), 801.Google Scholar
2. Juŝka, G., Viliunas, M., Arlauskas, K., Nekraŝas, N., Wyrsch, N., and Feitknecht, L., J. Appl. Phys. 89, 4971 (2001).Google Scholar
3. Serin, M., Harder, N., Carius, R., Journal of Materials Science: Materials in Electronics 14, 733 (2003).Google Scholar
4. Dylla, T., Finger, F., Schiff, E. A., unpublished.Google Scholar
5. Meier, J., R. Flückiger, Keppner, H., and Shah, A., Appl. Phys. Lett. 65, 860 (1994).Google Scholar
6. Vetterl, O., Dasgupta, A., Lambertz, A., Stiebig, H., Finger, F. and Wagner, H., Materials Research Society Symposia Proceedings, 664 (2001), A25.8.Google Scholar
7. Tiedje, T., in Hydrogenated Amorphous Silicon II, edited by Joannopoulos, J. D. and Lucovsky, G. (Springer-Verlag, New York, 1984), pp. 261300.Google Scholar
8. Weis, T., Lipperheide, R., Wille, U., and Brehme, S., J. Appl. Phys. 92, 1411 (2002).Google Scholar
9. Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F., and Wagner, H., Phil. Mag. A 77, 1447 (1998).Google Scholar
10.μDd 2/2(V+Vbi)tT, where d is the i-layer thickness, V the applied voltage, Vbi is a correction for the internal field, and tT is the transit-time corresponding to a charge collection of 50%.Google Scholar
11. Dinca, S., Ganguly, G., Lu, Z., Schiff, E. A., Vlahos, V., Wronski, C. R., Yuan, Q., in Amorphous and Nanocrystalline Silicon Based Films – 2003, edited by Abelson, J. R., Ganguly, G., Matsumura, H., Robertson, J., Schiff, E. A. (Materials Research Society Symposium Proceedings Vol. 762, Pittsburgh, 2003), 343.Google Scholar
12. Gu, Q., Wang, Q., Schiff, E. A., Li, Y.-M., and Malone, C. T., J. Appl. Phys. 76, 2310– (1994).Google Scholar
13.The concept of a “thermal velocity” vth = (2kBT/me)1/2 is based on effective-mass theory, and has no meaning in other transport models.Google Scholar
14.The multiple-trapping model invokes a “transport edge” that most workers associate with Nevill Mott's “mobility-edge;” however, alternate views have been proposed, in particular “hopping only” and “potential fluctuation” models.Google Scholar
15. Wang, Q., Antoniadis, H., Schiff, E. A., and Guha, S., Phys. Rev. B 47, 9435 (1993).Google Scholar
16. Reynolds, S., Smirnov, V., Main, C., Carius, R., and Finger, F., in Amorphous and Nanocrystalline Silicon Based Films – 2003, edited by Abelson, J. R., Ganguly, G., Matsumura, H., Robertson, J., Schiff, E. A. (Materials Research Society Symposium Proceedings Vol. 762, Pittsburgh, 2003), 327.Google Scholar
17. Overhof, H. and Thomas, P., Electronic Transport in Hydrogenated Amorphous Semiconductors (Springer, New York, 1989).Google Scholar
18. Atta-Fynn, R., Biswas, P., Ordejón, P., and Drabold, D. A., Phys. Rev. B 69, 085207 (2004).Google Scholar
19. Yelon, A. and Movaghar, B., Phys. Rev. B 65, 077202 (2002); A. Yelon, B. Movaghar, and H. M. Branz, Phys. Rev. B 46, 12244 (1992).Google Scholar
20. Chen, L. C., Hamel, L.A., Yelon, A., J. Non-Cryst. Solids 220, 254 (1997).Google Scholar
21. Gu, Q., Schiff, E. A., Chevrier, J.-B. and Equer, B., Phys. Rev. B 52, pp. 5695 (1995).Google Scholar