Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:44:15.886Z Has data issue: false hasContentIssue false

High-Rate Plasma Process for Microcrystalline Silicon: Over 9% Efficiency Single Junction Solar Cells

Published online by Cambridge University Press:  21 March 2011

Takuya Matsui
Affiliation:
Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, 305-8568, Japan
Akihisa Matsuda
Affiliation:
Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, 305-8568, Japan
Michio Kondo
Affiliation:
Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, 305-8568, Japan
Get access

Abstract

This paper presents microcrystalline silicon (μ c-Si:H) p-i-n (superstrate-type) solar cells fabricated by 100 MHz plasma-enhanced chemical vapor deposition (PECVD) at i-layer deposition rates of >2 nm/s. Under high-rate conditions, in particular, the deposition pressure is found to play a dominant role in determining short circuit current (Jsc) of solar cell. With anincrease in deposition pressure from 3 to 7-9 Torr, Jsc increases by more than 50% due to a significant improvement in the long wavelength (>600 nm) responses, which essentially leads to high efficiency (∼8%) solar cells in the 2-3 nm/s deposition rate range. Further progress in solar cell efficiency has been made by the improvement of TCO/p and p/i interfaces. As a result, efficiency reaches 9.13% (Jsc=23.7 mA/cm2,Voc=0.528 V,FF=0.73) with a 2.3μm-thick i-layer grown at 2.3 nm/s. Transmission electron microscopy and secondary-ion mass spectroscopy studies reveal that samples prepared at lower pressure (∼4 Torr) comprise many grain boundaries due to disordered grain growth, which induces an anomalous incorporation of atmospheric impurities (predominantly oxygen) after exposing sample to air. In contrast, the high-pressure process (<7 Torr) provides denser grain columns coalesced with [110]-oriented crystallites, which in turn inhibits impurities from penetrating deeper in the film. Based on above results, we propose that the less post-oxidation behavior associated with the denser microstructure of high-pressure-grown μc-Si:H is responsible for the excellent charge collection in p-i-n solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meier, J., Dubail, S., Flückiger, R., Keppner, H. and Shah, A., Appl. Phys. Lett. 65, 860 (1994).Google Scholar
2. Yamamoto, K., IEEE Trans. Electron Devices 46, 2041 (1999).Google Scholar
3. Saito, K., Sano, M., Sakai, A., Hayashi, R. and Ogawa, K., Tech. Dig. 20th Int. PVSEC, Jeju, Korea (Kyung Hee Information Printing, Seoul, 2001). p. 429.Google Scholar
4. Nasuno, Y., Kondo, M. and Matsuda, A., Jpn. J. Appl. Phys. 41, 5912 (2002).Google Scholar
5. Vetterl, O., Carius, R., Houben, L., Scholten, C., Luysberg, M., Lambertz, A., Finger, F. and Wagner, H., Mater. Res. Soc. Symp. Proc. 609, A15.2.1 (2000).Google Scholar
6. Matsui, T., Muhida, R., Kawamura, T., Toyama, T., Okamoto, H., Yamazaki, T., Honda, S., Takakura, H. and Hamakawa, Y., Appl. Phys. Lett. 81, 4751(2002).Google Scholar
7. Klein, S., Finger, F., Carius, R., Rech, B., Houben, L., Luysberg, M. and Stutzmann, M., Mater. Res. Soc. Symp. Proc. 715, A26.2 (2002).Google Scholar
8. Matsuda, A., J. Non-Cryst. Solids 59/60, 767 (1983).Google Scholar
9. Kondo, M., Fukawa, M., Guo, L. and Matsuda, A., J. Non-Cryst. Solids 266–269 84 (2000).Google Scholar
10. Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Muck, A., Rech, B. and Wagner, H., Sol. Energy Mater. & Sol. Cells 62, 97 (2000).Google Scholar
11. Matsui, T., Kondo, M. and Matsuda, A., Jpn. J. Appl. Phys. 42 (2002) L901.Google Scholar
12. Finger, F., Kroll, U., Viret, V., Shah, A., Beyer, W., Tang, X.-M., Weber, J., Howling, A. and Hollenstein, Ch., J. Appl. Phys. 71, 5665 (1992).Google Scholar
13. Roschek, T., Repmann, T., Müller, J., Rech, B. and Wagner, H., J. Vac. Sci. & Technol. A 20, 492 (2002).Google Scholar
14. Matsui, T., Tsukiji, M., Saika, H., Toyama, T. and Okamoto, H., Jpn. J. Appl. Phys. 41 (2002) 20.Google Scholar
15. Matsui, T., Kondo, M. and Matsuda, A., Proc of 3rd WCPEC Osaka, Japan, (2003) p.1548.Google Scholar
16. Werner, J. H., Dassow, R., Köhler, T. J. and Bergmann, R. B., Thin Solid Films 383 (2001) 95.Google Scholar
17. Newman, R. C. and Jones, R., in Oxygen in Silicon, edited by Shimura, F. (Academic, San Diego, 1994), Vol. 42, p. 289.Google Scholar
18. Veprek, S., Iqbal, Z., Kühne, R. O., Capezzuto, P., Sarott, F-A. and Gimzewski, J. K., J. Phys. C: Solid State Phys. 16, 6241 (1983).Google Scholar
19. Lucovsky, G., Wang, C., Williams, M. J., Chen, Y. L. and Maher, D. M., Mater. Res. Soc. Symp. Proc. 283, 443 (1993).Google Scholar
20. Torres, P., Meier, J., Flückiger, R., Kroll, U., Selvan, J. A. Anna, Keppner, H., Shah, A., Littlewood, S. D., Kelly, I. E. and Giannoulès, P., Appl. Phys. Lett. 69, 1373 (1996).Google Scholar
21. Nasuno, Y., Kondo, M. and Matsuda, A., Appl. Phys. Lett. 78, 2330 (2001).Google Scholar