Article contents
High Quality Hot-wire Microcrystalline Silicon for Efficient Single and Multijunction N-i-p Solar Cells
Published online by Cambridge University Press: 01 February 2011
Abstract
In this paper, the potential of hot-wire chemical vapor-deposited (HWCVD) microcrystalline silicon (μc-Si) for use in solar cells is explored. Incorporation of the material in the current-limiting bottom cell of two tandem cells on plain stainless steel resulted in FF values as high as 0.77, which is much higher than the highest single junction FF. A combination of experiments, calculations and computer simulations was employed to identify causes for the observed high tandem cell FF values. Both the light intensity and the spectral composition of the bottom cell illumination in a tandem were found to contribute to an increase of the bottom cell FF. The fact that the operational voltage of a tandem cell is higher than that of the current-limiting subcell, was calculated to lead to a tandem FF that can be far higher than that of the limiting cell. Com-puter simulations with the AMPS computer code show that the current mismatch in a tandem cell reduces the recombination in the current-limiting cell, possibly by slightly enhancing the internal field of that cell. Use of a 1.5 μm ìc-Si:H hot-wire deposited absorber layer in a single junction cell on a textured back reflector yielded a Voc, FF and Jsc of 0.543 V, 0.656 and 23.60 mA/cm2, respectively, which combine to an 8.4 % record efficiency for μc-Si single junction n-i-p cells with a hot-wire intrinsic layer.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2006
References
- 5
- Cited by