Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:24:45.903Z Has data issue: false hasContentIssue false

High quality GdSil.7 layers formed by high dose channeled implantation

Published online by Cambridge University Press:  15 February 2011

M. F. Wu
Affiliation:
Department of Technical Physics, Peking University, Beijing, People's Republic of China Instituut voor Kern- en Stralingsfysika, University of Leuven, B-3001 Leuven, Belgium
A. Vantomme
Affiliation:
Instituut voor Kern- en Stralingsfysika, University of Leuven, B-3001 Leuven, Belgium
H. Pattyn
Affiliation:
Instituut voor Kern- en Stralingsfysika, University of Leuven, B-3001 Leuven, Belgium
G. Langouche
Affiliation:
Instituut voor Kern- en Stralingsfysika, University of Leuven, B-3001 Leuven, Belgium
H. Bender
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
Get access

Abstract

Thin gadolinium silicide layers have been formed by channeled ion beam synthesis. Continuous and heteroepitaxial GdSil.7 layers with a hexagonal structure and a χmin value of 10% are prepared by Gd ion implantation at 90 keV to a dose of 1.3x1017/cm2 at 450°C in Si(111) using channeled implantation. The hexagonal phase of GdSi1.7 is stable up to a temperature of 850°C. Both the crystalline quality and the phase stability are much better than the results obtained by conventional techniques. Annealing at > 900°C suddenly changes the χmin value of the silicide layer from 10% to 100%. X-ray diffraction shows that the phase has changed to orthorhombic. RBS/channeling, x-ray diffraction and transmission electron microscopy are used in this study.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tung, R.T., Poate, J.M., Bean, J.C., Gibson, J.M. and Jacobson, D.C., Thin Solid Films 93, 77 (1982).Google Scholar
2. Derrien, J. and d'Avitaya, F. Arnaud, J. Vac. Sci. Technol. A 5, 2111 (1987).Google Scholar
3. Tu, K.U., Thompson, R.D. and Tsaur, B.Y., Appl. Phys. Lett. 38, 626 (1981).Google Scholar
4 Koleshko, V.M., Belitsky, V.F. and Knodin, A.A., Thin Solid Films 141, 277 (1986).Google Scholar
5. Knapp, J.A. and Picraux, S.T., Mater. Res. Soc. Symp. Proc. 54, 261 (1986).Google Scholar
6. Molnár, G., Geröcs, I., Petö, G., Zsoldos, E. and Gyulai, J., Appl. Phys. Lett. 58, 249 (1991).Google Scholar
7. Vannuffel, C., Inst. Phys. Conf. Ser. 146, 537 (1995).Google Scholar
8. Molnár, G., Zsoldos, E., Horváth, Z.E., Khan, N.Q., Appl. Surf. Sci., in press (1996).Google Scholar
9. Youn, Chang-joo, Jungling, Kenneth and Grannemann, W.W., J. Vac. Sci. Technol. A 6, 2474 (1988).Google Scholar
10. Molnár, G., Geröcs, I., Petö, G., Zsoldos, E., Jároli, E. and Gyulai, J., J. Appl. Phys. 64, 6746 (1988).Google Scholar
11. Wu, M.F., Vantomme, A., Pattyn, H., and Langouche, G., Appl. Phys. Lett. 67, 3886 (1995).Google Scholar
12. Wu, M.F., Vantomme, A., De Wachter, J., Degroote, S., Pattyn, H., Langouche, G. and Bender, H., J. Appl. Phys. in press (1996).Google Scholar
13. Bender, H., Wu, M.F., Vantomme, A., Pattyn, H. and Langouche, G., accepted for publication in Mat. Res. Soc. Symp. Proc. vol.402, (1996).Google Scholar