Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T18:53:22.423Z Has data issue: false hasContentIssue false

High Mobility Two-Dimensional Electron Gas in Modulation-Doped Si/SiGe Heterostructures

Published online by Cambridge University Press:  22 February 2011

P. J. Wang
Affiliation:
IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
B. S. Meyerson
Affiliation:
IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
K. Ismail
Affiliation:
IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
F. F. Fang
Affiliation:
IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
J. Nocera
Affiliation:
IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Get access

Abstract

We report record-high electron mobilities obtained in the Si/SiGe alloy system via single-junction n-type modulation-doped Si/Si0.7Ge0.9 heterostructurcs grown by the ultra-high vacuum chemical vapor deposition technique. Peak electron mobilities as high as 1,800 cm2/Vs, 9,000 cm2/Vs and 19,000 cm2/Vs were measured at room temperature, 77K and 1.4K, respectively. These high mobilities resulted from excellent Si/SiGe interfacial properties by employing a compositional graded Si/SiGe superlattice prior to the growth of a thick S0.7Ge0.3 buffer, which brought about a dramatic reduction of the threading dislocation density in the active Si channel. Two thin phosphorous-doped layers were incorporated in the SiGe barrier and at its surface to supply electrons to the Si channel and to suppress the surface depletion, respectively. The transport properties of these heterostructurcs were determined to be those of a two dimensional electron gas at Si/SiGe heterointerfaces at low temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bean, J. C., J. Crystal Grow. 81, 411 (1987).Google Scholar
[2] Meyerson, B. S., Appl. Phys. Lett. 48, 797 (1986).CrossRefGoogle Scholar
[3] Patton, G. L., Comfort, J. H., Meyerson, B. S., Crabbe, E. F., Scilla, G. J., DeFresart, E., Stork, J. M. C., Sun, J. Y. -C., Harame, D. L., and Burghartz, J., Electron. Dev. Lett. 11, 171 (1990).Google Scholar
[4] Wang, P. J., Fang, F. F., Meyerson, B. S., Noccra, J., and Parker, B., Appl. Phys. Lett. 55, 2333 (1989).Google Scholar
[5] Abstreiter, G., Brugger, H., Wolf, T., Jorke, H., Herzog, H. J., Phys. Rev. Lett. 54, 2441 (1985).Google Scholar
[6] Schämer, F. and Jorke, H., Appl. Phys. Lett. 58, 397 (1991).Google Scholar
[7] Daembkes, H., Herzog, H. J., Jorke, H., Kibbel, H., and Kasper, E., IEEE Trans. Electron Devices, 33, 633 (1986).Google Scholar
[8] Meyerson, B. S., LeGoues, F. K., Nguyen, T. N., and Harame, D. L., Appl. Phys. Lett. 50, 113 (1987).Google Scholar
[9] LeGoues, F., Morar, J., and Meyerson, B. S., Phys. Rev. Lett, (to be published).Google Scholar
[10] Ismail, K., Meyerson, B. S., and Wang, P. J., unpublished.Google Scholar
[11] Dingle, R., Stornier, H. L., Gossard, A. C. and Weigmann, W., Inst. Phys. Conf. Ser. No. 45, 248 (1979).Google Scholar
[12] Fang, F. F. and Stiles, P. J., Phys. Rev. 174 823 (1968).Google Scholar
[13] Fowler, G. A. B., Fang, F. F., Howard, W. E., and Stiles, P. J., Phys. Rev. Lett. 16, 901 (1966).Google Scholar