Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T07:32:14.910Z Has data issue: false hasContentIssue false

High Density Magnetically Confined Dry Etching of Metallization and Dielectrics in Gaas Device Technology

Published online by Cambridge University Press:  25 February 2011

S. J. Pearton
Affiliation:
University of Florida, Gainesville, FL 32611 AT&T Bell Laboratories, Murray Hill, NJ 07974
C. R. Abernathy
Affiliation:
University of Florida, Gainesville, FL 32611 AT&T Bell Laboratories, Murray Hill, NJ 07974
F. Ren
Affiliation:
University of Florida, Gainesville, FL 32611
J. R. Lothian
Affiliation:
University of Florida, Gainesville, FL 32611
R. F. Kopf
Affiliation:
University of Florida, Gainesville, FL 32611
A. Katz
Affiliation:
University of Florida, Gainesville, FL 32611
Get access

Abstract

Dry etching of common masking materials used in GaAs device technology was examined down to temperatures of −30°C. The etch rates of SiNx, SiO2 and W in SF6/Ar are reduced below 0°C, but the anisotropy of the etching is improved at low temperature. Microwave enhancement of the SF6/Ar discharges produces increases in etch rates of several times at 25°C, but much lower increases at −30°C substrate temperature. The underlying GaAs surface shows increased S and F coverage after low temperature etching, but these species are readily removed either by an ex-situ wet chemical cleaning step or an in-situ H2 plasma exposure. Photoresist etching is less sensitive to temperature and anisotropic profiles are produced between −30 and + 60°C in pure 02 discharges.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Niggerbrugge, U., Klug, M. and Garus, G., Inst. Phys. Conf. Ser. 79 367 (1985).Google Scholar
2 Tachi, S., Tsujimoto, K. and Okudaira, S., Appl. Phys. Lett. 52 616 (1988).Google Scholar
3 Petri, R., Henry, D., Francou, J. M., Sadeghi, N. and Bescanon, M. V., J. Appl. Phys. 74 3289 (1993).Google Scholar
4 Chow, T. P., Saxena, A. N., Ephrath, L. E. and Bennet, R. S., in Dry Etching for Microelectronics, ed. Powell, R. A. (North-Holland, Amsterdam, 1984).Google Scholar
5 Franssila, S., in Proc. 7th Symp. Plasma Proc. ed. Mathad, G. (Electrochem. Soc., Pennington, NJ 1988) pp. 228229.Google Scholar
6 Tennant, D. M., Shunk, S. C., Feurer, M. D., Kuo, J. M., Dehringer, R. E., Chang, T. Y. and Epworth, D. W., J. Vac. Sci. Technol. B 7 1836 (1989).CrossRefGoogle Scholar
7 Seaward, K. L., Moll, N. J. and Stickle, W. F., J. Electron. Mater. 19 385 (1990).Google Scholar
8 Choquette, K. D., Wetzel, R. C., S Freund, R. and Kopf, R. F., J. Vac. Sci. Technol. B 10 2725 (1992).CrossRefGoogle Scholar