Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-06T04:20:09.809Z Has data issue: false hasContentIssue false

The Ge/Pd/n-GaAs Ohmic Contact Interface Studied by Backside Raman Spectroscopy

Published online by Cambridge University Press:  25 February 2011

J. Watté
Affiliation:
Laboratorium voor Vaste-Stoffysika en Magnetisme, KULeuven, Celestijnenlaan, 200D, B-3001 Leuven, Belgium
R.E. Silverans
Affiliation:
Laboratorium voor Vaste-Stoffysika en Magnetisme, KULeuven, Celestijnenlaan, 200D, B-3001 Leuven, Belgium
H. Miinder
Affiliation:
Institut fur Schicht-und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
C.J. Palmstrøm
Affiliation:
Bellcore, Red Bank, New Jersey 07701-7040
L.T. Florez
Affiliation:
Bellcore, Red Bank, New Jersey 07701-7040
M. Van Hove
Affiliation:
Interuniversitair Micro-Electronica Centrum (IMEC), Kapeldreef, 75, B-3001 Leuven, Belgium
G. Borghs
Affiliation:
Interuniversitair Micro-Electronica Centrum (IMEC), Kapeldreef, 75, B-3001 Leuven, Belgium
K. Wuyts
Affiliation:
Interuniversitair Micro-Electronica Centrum (IMEC), Kapeldreef, 75, B-3001 Leuven, Belgium
Get access

Abstract

The Ge/Pd/n-GaAs ohmic contact structure constitutes a near-ideal model system to test the applicability of the different metal/GaAs ohmic contact models. After annealing, an atomically flat interface between the GaAs substrate and a regrown Ge layer is obtained. A main point of discussion is whether the ohmic conduction across this junction either occurs by an enhanced Ge-doping of the GaAs (regrown) substrate surface layers (the doping model), and/or by a degenerate As-doping ot the Ge overlayer (the heterojunction hypothesis). In order to examine the applicability of both models, a Raman study of this system is undertaken. By a backside thinning procedure, a metallization/60 nm GaAs structure is preserved, allowing for a backside optical analysis of the regrown Ge/GaAs interface region.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sands, T., Marshall, E.D., and Wang, L.C., J. Mater. Res. 3, 914 (1988)CrossRefGoogle Scholar
2 Schwarz, S.A., Palmstrøm, C.J., Schwartz, CL., Sands, T., Shantarama, L.G., Harbison, J.P., Florez, L.T., Marshall, E.D., Han, C.C., Lau, S.S., Allen, L.H., and Mayer, J.W., J. Vac. Sci. Technol. A, 8, 2079 (1990)CrossRefGoogle Scholar
3 Wang, L.C., Li, Y.Z., Kappes, M., Lau, S.S., Hwang, D.M., Schwarz, S.L., and Sands, T., Appl. Phys. Lett. 60, 3016 (1992)CrossRefGoogle Scholar
4 Braslau, N., J. Vac. Sci. Technol. 19, 803 (1981)CrossRefGoogle Scholar
5 Lai, J.-T., and Lee, J. Y.-M., Appl. Phys. Lett. 64, 306 (1994)CrossRefGoogle Scholar
6 Wang, L.C., Wang, X.Z., Lau, S.S., Sand, T., and Kuech, T.F., J. Mater. Res. 3, 922 (1988)CrossRefGoogle Scholar
7 Abstreiter, G., Bauser, E., Fisher, A., and Ploog, K., Appl. Phys. 16, 345 (1976)CrossRefGoogle Scholar
8 Watté, J., PhD thesis, KU Leuven , (1994), unpublishedGoogle Scholar
9 Wuyts, K., Watté, J., Silverans, R.E., Van Hove, M., Borghs, G., Palmstrøm, C.J., Florez, L.T., and Münder, H., to be published in Appl. Phys. Lett.Google Scholar
10 Wuyts, K., Langouche, G., Watté, J., Vanderstraeten, H., Silverans, R.E., Münder, H., Berger, M.G., Lüth, H., Van Hove, M., Bender, H., and Van Rossum, M., Phys. Rev. B, 45, 11863 (1992)CrossRefGoogle Scholar
11 Palmstrøm, C.J., Schwarz, S.A., Yablonovitch, E., Harbison, J.P., Schwartz, C.L., Florez, L.T., Gmitter, T.J., Marshall, E.D., and Lau, S.S., J. Appl. Phys. 67, 334 (1990)CrossRefGoogle Scholar
12 Mlayah, A., Carles, R., Bedel, E., and Muňoz-Yague, A., J. Appl. Phys. 74, 1072 (1993)CrossRefGoogle Scholar
13 Marshall, E.D., Lau, S.S., Palmstrøm, C.J., Sands, T., Schwartz, C.L., Schwarz, S.A., Harbison, J.P., and Florez, L.T., Mat. Res. Soc. Symp. Proc. 148, 163 (1989)CrossRefGoogle Scholar
14 Watté, J., Wuyts, K., Silverans, R.E., Van Hove, M., Borghs, G., and Münder, H., to be pubished in Proceedings of the ICFSI-4 Meeting, ed. Lüth, H., (Jülich, 1993)Google Scholar
15 Compaan, A., Contreras, G., Cardona, M., and Axmann, A., Mat. Res. Soc. Symp. Proc. 23, 117 (1984)CrossRefGoogle Scholar
16 Cerdeira, F., and Cardona, M., Phys. Rev. B, 5, 1440 (1972)CrossRefGoogle Scholar
17 Merlin, R., Pinczuk, A., Beard, W.T., and Wood, C.E.E., J. Vac. Sci. Technol. 21, 516 (1982)CrossRefGoogle Scholar
18 Brugger, H., Schäffler, F., and Abstreiter, G., Phys. Rev. Lett. 52, 141 (1984)CrossRefGoogle Scholar
19 Koch, F., and Zrenner, A., Mat. Sci. Eng. B, 1, 289 (1989)Google Scholar
20 Sands, T., Mat. Sci. Eng. B, 1, 289 (1989)CrossRefGoogle Scholar
21 Lai, J.-T., and Lee, J. Y.-M., Appl. Phys. Lett. 64, 229 (1994)CrossRefGoogle Scholar
22 Lin, J.-C., Hsieh, K.-C., Schulz, K.J., and Chang, Y.A., J. Mater. Res. 3, 148 (1988)CrossRefGoogle Scholar
23 Van Hove, M., Van Hellemont, J., Van Hoof, C., Borghs, G., and Van Rossum, M., Superl. and Microstr. 8, 1 (1990)CrossRefGoogle Scholar
24 Morishita, K., Molarius, J.M., Kolawa, E., Dobeli, M., Tombrello, T., and Nicolet, M.-A., Thin Solid Films 196, 82 (1991)CrossRefGoogle Scholar
25 Chambers, S.A. and Loebs, V.A., Phys. Rev. B, 47, 9513 (1993)CrossRefGoogle Scholar