Article contents
Flexible Optical Interconnects via Thiol-ene Two-photon-induced Polymerization
Published online by Cambridge University Press: 09 August 2012
Abstract
Two-photon polymerization (2PP) is an emerging tool in the field of additive manufacturing technologies, which allows for the elegant 3D lithographic production by means of photosensitive resins. One key advantage of 2PP is the achievable feature resolution. A few tens of nanometers are currently the resolution limit for this novel technique. Fields of applications are as diverse as photonics, microfluidics and biomedicine.
A challenging photonics application for 2PP are optical interconnects, where optical elements on printed circuit boards are connected with waveguides. The possibility for real 3D structuring allows for easier positioning of the cured structures and straightforward processing outperforming techniques such as 2D lithography or reactive ion etching in this regard. If mechanical flexibility of the printed circuit board is required as a property for certain niche applications, polysiloxanes are an interesting class of matrix material. This is also due to their low optical damping behavior and high temperature stability as the material has to withstand temperatures around 250°C during the manufacturing process. In this work, we present our latest approach to create polysiloxane-based waveguides via 2PP of specially tailored thiol-ene formulations. Latest improvements on the ease of processing and the local refractive index increase are shown as well as the proof of principle for waveguiding. Optical waveguides were successfully created via 2PP with writing speeds around 10 mm/min.
- Type
- Articles
- Information
- MRS Online Proceedings Library (OPL) , Volume 1438: Symposium M – Optical Interconnects—Materials, Performance and Applications , 2012 , mrss12-1438-m01-08
- Copyright
- Copyright © Materials Research Society 2012
References
REFERENCES
- 1
- Cited by