Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:57:25.970Z Has data issue: false hasContentIssue false

First-Principles Study of Vacancy-Assisted as Diffusion in Silicon

Published online by Cambridge University Press:  10 February 2011

Jianjun Xie
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
S.P. Chen
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Get access

Abstract

A set of interaction potentials for vacancy-assisted As diffusion in silicon have been provided via first-principles pseudo-potential calculations. Some important reactions such as As+V ⇌ AsV, AsV + As ⇌ As2V, AsV + V ⇌ V2, as well as V + V ⇌ V2 are considered. The results demonstrate that the existence of another As atom greatly reduces the migration barrier of vacancy moving between the two As atoms and speeds up the diffusion of As. The AsV pair can attract another nearby vacancy. The binding force mainly comes from the binding between two vacancies, rather than from the AsV pair. The obtained potential energy diagrams provide input information for atomistic diffusion simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shewmon, P., Diffusion in Solids (The Minerals, Metals & Materials Society, Warrendale, Pennsylvania, 1989).Google Scholar
2. Fahey, P.M., Griffin, P.B., and Plummer, J.D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
3. Ural, A., Griffin, P.B. and Plummer, J.D., J. Appl. Phys. (submitted 1998).Google Scholar
4. Nichols, C.S., Walle, C.G. Van de, and Pantelides, S.T., Phys. Rev. B40, 5485 (1989).Google Scholar
5. Dunham, S.T. and Wu, C.D., J. Appl. Phys. 78, 2362 (1995)Google Scholar
6. List, S. and Ryssel, H., J. Appl. Phys. 83, 7595 (1998).Google Scholar
7. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn, and L.J. Sham, Phys. Rev. 140, A1133 (1965).Google Scholar
8. Ceperley, D.M. and Alder, B.J., Phys. Rev. Lett. 45, 567 (1980).Google Scholar
9. Perdew, J.P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
10. Bockstedte, M., Kley, A., Neugebauer, J. and Scheffier, M., Comput. Phys. Commun. 107, 187 (1997).Google Scholar
11. Hamann, D.R., Phys. Rev. B40, 2980 (1989).Google Scholar
12. Payne, M.C. et al., Phys. Rev. Lett. 56, 2656 (1986).Google Scholar
13. Xie, J. and Chen, S.P., J. Phys. D: Appli. Phys. (in press, 1999).Google Scholar
14. Hu, S.M., Phys. Status Solidi B 60, 595 (1973).Google Scholar
15. Hirata, M., Hirata, M., and Saito, H., J. Phys. Soc. Jpn. 27, 405 (1969).Google Scholar
16. Mathiot, D. and Pfister, J.C., J. Phys. (Paris), Lett. 43, L453 (1982); J. Appl. Phys. 66, 970 (1989).Google Scholar
17. Larsen, A. Nylandsted et al., J. Appl. Phys. 73, 691 (1993).Google Scholar
18. Ramamoorthy, M. and Pantelides, S.T., Phys. Rev. Lett. 76, 4753 (1996).Google Scholar
19. Lawther, D.W., et al., Appl. Phys. Lett. 67, 3575 (1995).Google Scholar
20. Fair, R.B. and Weber, G.R., J. Appl. Phys. 44, 273 (1973).Google Scholar
21. Hastings, J.L. and Estreicher, S.K., Phys. Rev. B56, 10215 (1997).Google Scholar
22. Seong, H. and Lewis, L.J., Phys. Rev. B53, 9791 (1996).Google Scholar
23. Watkins, G.D. and Corbett, J.W., Phys. Rev. 138, A543 (1965).Google Scholar