Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T11:02:14.376Z Has data issue: false hasContentIssue false

Fabrication and Electrical Characterization of Metal-Silicide Nanocrystals for Nano Floating Gate Nonvolatile Memory

Published online by Cambridge University Press:  31 January 2011

Seung Jong Han
Affiliation:
[email protected], Hanyang University, Physics, Seoul, Korea, Republic of
Ki Bong Seo
Affiliation:
[email protected], Hanyang University, Physics, Seoul, Korea, Republic of
Dong Uk Lee
Affiliation:
[email protected], Hanyang University, Physics, Seoul, Korea, Republic of
Eun Kyu Kim
Affiliation:
[email protected], Hanynag University, Physics, 17 Haengdang-dong, Seongdong-gu, Seoul, 133-791, Korea, Republic of
Se-Mam Oh
Affiliation:
[email protected], Kwangwoon University, Electronic Materials Engineering, Seoul, Korea, Republic of
Won-Ju Cho
Affiliation:
[email protected], Kwangwoon University, Electronic Materials Engineering, Seoul, Korea, Republic of
Get access

Abstract

We have fabricated the nano-floating gate memory with the TiSi2 and WSi2 nanocrystals embedded in the dielectrics. The TiSi2 and WSi2 nanocrystals were created by using sputtering and rapidly thermal annealing system, and then their morphologies were investigated by transmission electron microscopy. These nanocrystals have a spherical shape with an average diameter of 2-5 nm. The electrical properties of the nano-floating gate memory with TiSi2 and WSi2 nanocrystals were characterized by capacitance-voltage (C-V) hysteresis curve, memory speed and retention. The flat-band voltage shifts of the TiSi2 and WSi2 nanocrystals capacitors obtained appeared up to 4.23 V and 4.37 V, respectively. Their flat-band voltage shifts were maintained up to 1.6 V and 1 V after 1 hr.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bez, R., and Pirovano, A., Mater. Sci. Semicond. Process 7 349 (2004).Google Scholar
2 Shin, Y., Yang, H. G., Lv, J., Pu, L., Zhang, R., Shen, B., and Zheng, Y. D., International Conference on Solid-State and Integrated Circuits Technology Proceedings, pp. 881884 (2004).Google Scholar
3 Yano, K., Ishii, T., Hashimoto, T., Kobayashi, T., Murai, F., and Seki, K., IEEE Trans. Electron Devices 41 1628 (1994).Google Scholar
4 Blauwe, J. D., IEEE Trans. Nanotechnol. 1, 72 (2002).Google Scholar
5 Kanjilal, A., Lundsgaard Hansen, J., Gaiduk, P., Nylandsted Larsen, A., Cherkashin, N., Claverie, A., Normand, P., Kapelanakis, E., Skarlatos, D., and Tsoukalas, D., Appl. Phys. Lett. 82, 1212 (2003).Google Scholar
6 Dufourcq, J., Bodnar, S., Gay, G., Lafond, D., Molas, P., Nieto, J. P., Vandroux, L., jodin, L., Gustavo, F., and Baron, Th., Appl. Phys. Lett. 92. 073102 (2008).Google Scholar
7 Singh, P. K., Bisht, G., Hofmann, R., Singh, K., Krishna, N., and Mahapatra, S., IEEE Electron Device Lett. 29, 1389 (2008).Google Scholar
8 Chan, K. C., Lee, P. F., and Dai, J. Y., Microelectron. Eng. 85, 2385 (2008).Google Scholar
9 Park, B., Choi, S., Lee, H–R., Cho, K.. and Kim, S., Solid State Commun. 143, 550 (2007).Google Scholar
10 Chang, S. M., Huang, H. Y., Yang, H. Y., and Chen, L. J., Appl. Phys. Lett. 74, 224 (1999).Google Scholar
11 Bharat, S., Sahoo, P.K., and Katiyar, M., Thin Solid Films 462, 127 (2004).Google Scholar
12 Panda, D., Dhar, A., and A, Ray, S. K., IEEE Trans. Electron Devices 55, 2403 (2008).Google Scholar
13 Lee, D. U., Lee, M. S., Kim, J-H., Kim, E. K., Koo, H-M., Cho, W-J., and Kim, W. M., Appl. Phys. Lett. 90, 093514 (2007).Google Scholar