Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:39:38.390Z Has data issue: false hasContentIssue false

Estimation of Fiber-Matrix Interfacial Shear Strengths in Lignocellulosic-Thermoplastic Composites

Published online by Cambridge University Press:  15 February 2011

A. R. Sanadi
Affiliation:
Department of Forestry, University of Wisconsin, 1630 Linden Dr., Madison, WI-53706 and Forest Products Laboratory, 1 Gifford Pinchot Dr., Madison, WI-53703
R. M. Rowell
Affiliation:
Department of Forestry, University of Wisconsin, 1630 Linden Dr., Madison, WI-53706 and Forest Products Laboratory, 1 Gifford Pinchot Dr., Madison, WI-53703
R. A. Young
Affiliation:
Department of Forestry, University of Wisconsin, 1630 Linden Dr., Madison, WI-53706 and Forest Products Laboratory, 1 Gifford Pinchot Dr., Madison, WI-53703
Get access

Abstract

The interaction and adhesion between fibers and the matrix in composite materials have a significant influence on the properties of the fiber composite. It is, therefore, of utmost importance to be able to evaluate the properties of the interface/ interphase of the fiber-matrix for optimization of the properties of the composites. Techniques that are currently used to evaluate the properties of this region will be discussed with special attention to lignocellulosicthermoplastic composites. Sample preparation, applicability, problems and advantages of each technique will be highlighted. Results obtained at our laboratory for wood-low molecular weight polyethylene systems using the pull-out test will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Harris, B., Beaumont, P. W. R. and de Ferran, E. M., J. Mater. Sci., 6, 238 (1971).Google Scholar
2. Subramaninan, R. V. and Crasto, A. S., Polym. Compos., 7, 201 (1986).Google Scholar
3. Lipatov, Yu. S., Rosovitsky, V. F., Babich, B. V. and Kvita, N. A., J. Appl. Polym. Sci., 25, 1029 (1980).CrossRefGoogle Scholar
4. Theocaris, P. S., The Mesophase Concept in Composites, (Springer-Verlac, Berlin, 1986).Google Scholar
5. Sanadi, A. R., Subramaian, R. V. and Manoranjan, V. S., Polym. Compos., 12, 377 (1991).Google Scholar
6. Subramanian, R. V., Advances in Chemistry Series, 207, 323 (1984).Google Scholar
7. Drzal, L. T., Rich, M. J. and Lloyd, P. F., J. Adhes., 16, 1 (1982).CrossRefGoogle Scholar
8. Termonia, Y., J. Mater. Sci., 22, 504 (1987).Google Scholar
9. Piggott, M. R., Comp. Sci. Technol., 42, 57 (1991).Google Scholar
10. Herrera-Franco, P. J. and Drzal, L. T., Compos., 23, 2 (1992).Google Scholar
11. Verpoest, I., Desaeger, M. and Keuniings, R., in Controlled Interphases in Composite Materials, edited by Ishita, H. (Elsevier, NY, 1990), p 653.CrossRefGoogle Scholar
12. Tai, W. C., Quarles, S. L. and Rials, T. G., Poster Session, at American Chemical Society, Cellulose '91- ACS, New Orleans, Dec. 1991, unpublished.Google Scholar
13. Felix, J. and Gatenholm, P., Poster Session, at American Chemical Society, Cellulose '91- ACS, New Orleans, Dec 1991, unpublished.Google Scholar
14. Kelly, A., Strong Solids, 2nd ed. (Oxford Univ. Press, 1973), p203.Google Scholar
15 Greszczuk, L. B., ASTM STP, 452, 42 (1968).Google Scholar
16. Lawrence, P., J. Mater. Sci., 2, 1 (1972).Google Scholar
17. Penn, L. S. and Lee, S. M., J. Compos. Technol. Res., 11, 295 (1987).Google Scholar
18. Piggott, M. R. and Dai, S. R., Polym. Eng. Sci., 31, 1246 (1991).Google Scholar
19. Pitkethly, M. J. and Doble, J. B., Compos.,21, 389 (1990).Google Scholar
20. Rowell, R. M., J. Wood Chem. and Tech., 6, (1986),427.Google Scholar