Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:48:25.227Z Has data issue: false hasContentIssue false

Epitaxial Chemical Deposition of ZnO Nanocolumns from NaOH Solutions

Published online by Cambridge University Press:  03 September 2012

Renee B. Peterson
Affiliation:
Department of Chemistry and Biochemistry, University of Northern Colorado Greeley, CO 80639
Clark L. Fields
Affiliation:
Department of Chemistry and Biochemistry, University of Northern Colorado Greeley, CO 80639
Brian A. Gregg
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Get access

Abstract

A new method of depositing epitaxial ZnO nanocolumns on sputter-coated ZnO substrates is described that utilizes supersaturated zincate species in sodium hydroxide solutions and requires no complexing agents. Uniform arrays of columns are grown reproducibly over entire substrates in 10 to 50 min. Columns are 50 to 2000 nm long and 50 to 100 nm wide. Strict substrate cleaning and/or preparations are not necessary with this method, in contrast to many other techniques. Films grow only on substrates pre-coated with ZnO, not on bare glass or ITOor SnO2-coated glass. Factors affecting the column growth are elucidated and experimental observations are correlated with crystal growth theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Vayssieres, L.; Keis, K.; Lindquist, S.-E.; Hagfeldt, A. J. Phys. Chem. 2001, 105, 33503352.Google Scholar
(2) Beermann, N.; Vayssieres, L.; Lindquist, S.-E.; Hagfeldt, A. J. Electrochem. Soc. 2000, 147, 24562461.Google Scholar
(3) Gregg, B. A. In Molecules as Components in Electronic Devices; Lieberman, M., Ed.; American Chemical Society: Washington D. C., 2003, pp 243257.Google Scholar
(4) Könenkamp, R.; Boedecker, K.; Lux-Steiner, M. C.; Poschenrieder, M.; Zenia, F.; Levey-Clement, C.; Wagner, S. Appl. Phys Lett. 2000, 77, 25752577.Google Scholar
(5) Haga, K.; Katahira, F.; Watanabe, H. Thin Solid Films 1999, 343–344, 145147.Google Scholar
(6) Molarius, J.; Kaitila, J.; Pensala, T.; Ylilammi, M. Journal of Materials Science: Materials in Electronics 2003, 14, 431435.Google Scholar
(7) Izaki, M.; Ohmi, T. J. Electrochem. Soc. 1996, 143, L53–L55.Google Scholar
(8) Ambia, M. G.; Islam, M. N.; Hakim, M. O. J. Mater. Sci. 1994, 29, 65756580.Google Scholar
(9) Choi, J. H.; Tabata, T.; Kawai, T. J. Cryst. Growth 2001, 226, 493500.Google Scholar
(10) Pauporté, T.; Lincot, D. Electrochimica Acta. 2000, 45, 33453353.Google Scholar
(11) Izaki, M.; Ohmi, T. Appl. Phys Lett. 1996, 68, 24392440.Google Scholar
(12) Vayssieres, L. Adv. Mat. 2003, 15, 464466.Google Scholar
(13) Yamabi, S.; Imai, H. J. Mater. Chem 2002, 12, 37733778.Google Scholar
(14) Vayssieres, L.; Keis, K.; Lindquist, S.-E.; Hagfeldt, A. Chem. Mater. 2001, 13, 43954398.Google Scholar
(15) Laudise, R. A.; Ballman, A. A. J. Phys. Chem. 1960, 64, 688.Google Scholar
(16) Baes, C. F.; Messmer, R.E. in The Hydrolysis of Cations; Krieger publishing company Malabar, FL, 1976, p 287.Google Scholar
(17) Dryburgh, P. M. In Advanced Crystal Growth; Dryburgh, P. M. C. B.; Barraclough, K. G., Ed.; Prentice Hall International (UK) Ltd: Hertfordshire, UK, 1987, pp 121.Google Scholar