Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:51:55.668Z Has data issue: false hasContentIssue false

Environment-Dependent Tight-Binding Model for Molybdenum

Published online by Cambridge University Press:  10 February 2011

H. Haas
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstraβe 1, D-70569 Stuttgart, Germany Arnes Laboratory and Department of Physics, Iowa State University, Ames, IA 50011, USA
C. Z. Wang
Affiliation:
Arnes Laboratory and Department of Physics, Iowa State University, Ames, IA 50011, USA
M. Fähnle
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstraβe 1, D-70569 Stuttgart, Germany
C. Elsässer
Affiliation:
Max-Planck-Institut für Metallforschung, Seestraβe 92, D-70174 Stuttgart, Germany
K. M. Ho
Affiliation:
Arnes Laboratory and Department of Physics, Iowa State University, Ames, IA 50011, USA
Get access

Abstract

A transferable orthogonal tight-binding model for molybdenum is developed which goes beyond the traditional two-center approximation. The elements of the Hamiltonian matrix as well as the repulsive potential are allowed to depend on the environment. Several bulk, atomic defect and surface properties are calculated and compared with ab-initio data and experimental results to check the accuracy of the model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tang, M. S., Wang, C. Z., Chan, C. T. and Ho, K. M., Phys. Rev. B 53, 979 (1996).Google Scholar
2. Haas, H., Wang, C. Z., Fähnle, M., Elsässer, C. and Ho, K. M., submitted to Phys. Rev. B.Google Scholar
3. Meyer, B. and Fähnle, M., submitted to Phys. Rev. B.Google Scholar
4. Meyer, B., private communication.Google Scholar
5. Waseda, Y., Hirata, K. and Ohtani, M., High Temp. High Press. 7, 221 (1975).Google Scholar
6. Featherston, F. H. and Neighbours, J. R., Phys. Rev. 130, 1324 (1963).Google Scholar
7. Ziegler, R. and Schaefer, H.-E., Mat. Sci. Forum 15–18, 145 (1987).Google Scholar
8. Powell, B. M., Martel, P. and Woods, A. D. B., Can. J. Phys. 55, 1601 (1977).Google Scholar
9. Hong, S. C. and Lee, J. I., in International Conference on the Physics of Transition Metals (World Scientific Publishing, Singapore, 1992), p. 524.Google Scholar
10. Wang, X. W., Chan, C. T., Ho, K. M. and Weber, W., Phys. Rev. Lett. 60, 2066 (1988).Google Scholar
11. Clarke, L. J., Surf. Sa. 91, 131 (1980).Google Scholar
12. Ignatiev, A., Jona, F., Shih, H. D., Jepsen, D. W. and Marcus, P. M., Phys. Rev. B 11, 4787 (1975).Google Scholar
13. Smilgies, D. M., Eng, P. J. and Robinson, I. K., Phys. Rev. Lett. 70, 1291 (1993).Google Scholar