Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T08:51:32.562Z Has data issue: false hasContentIssue false

Empirical Tight-Binding Applied to Silicon Nanoclusters

Published online by Cambridge University Press:  10 February 2011

G. Allan
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, Département Institut Supérieur d'Electronique du Nord, BP 69, 59652 Villeneuve d'Ascq Cedex, France, [email protected]
C. Delerue
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, Département Institut Supérieur d'Electronique du Nord, BP 69, 59652 Villeneuve d'Ascq Cedex, France, [email protected]
M. Lannoo
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, Département Institut Supérieur d'Electronique du Nord, BP 69, 59652 Villeneuve d'Ascq Cedex, France, [email protected]
Get access

Abstract

The calculation of the electronic structure of silicon nanostructures is used to discuss the accuracy of results obtained by the tight-binding method. We first show that the level of refinement of the tight-binding approximation must be adapted to the calculated property. For example, an accurate description of both the valence and conduction bands which can be achieved with a 3rd-nearest neighbor approximation is necessary to calculate the variation of the gap energy with the silicon crystallite size. The sp3s* model which gives a bad description of the conduction band underestimates the confinement energy but can give good results when it is used to determine the variation of the crystallite band gap with pressure. To study Si-III (BC-8) nanocrystallites, we show that a good description of the bulk band structure can be obtained with non-orthogonal tight-binding but due to the large number of nearest neighbors one must take analytical variations of the parameter with interatomic distances. The parameters involved in these expressions can be easily fitted to the bulk band structures using the k-point symmetry without requiring the use of group theory. Finally we discuss the effect of increasing the size of the minimal-basis set and we show that it would be possible to get the values of the tight-binding parameters from a first-principles localized states band structure calculation avoiding the fit to the energy dispersion curves.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Vogl, P., Hjalmarson, H.P., and Dow, J., J. Phys. Chem. Solids 44, 365 (1983).Google Scholar
3. Lannoo, M. and Allan, G., J. Phys. Chem. Solids, 32, 637 (1971).Google Scholar
4. Zunger, A., J. Phys. C 7, 76 (1974).Google Scholar
5. Messmer, R. P., Phys. Rev. B 15, 1811 (1977).Google Scholar
6. Bilek, O. and Skala, L., Czech. J. Phys. B 28, 1003 (1978).Google Scholar
7. Kadura, P. and Kunne, L., Phys. Status Solidi B 88, 537 (1978).Google Scholar
8. Smith, R. A., Wave Mechanics of Crystalline Solids (Wiley, New York, 1961), p. 62.Google Scholar
9. Ramakrishna, M. V. and Friesner, R.A., Phys. Rev. Lett. 67, 629 (1991); J. Chem. Phys. 95, 8309 (1991); 96, 873 (1992).Google Scholar
10. Zhang, S.H., Yeh, C.-Y., and Zunger, A., Phys. Rev. B 48, 11204 (1993).Google Scholar
11. Mattheiss, L.F. and Patel, J.R., Phys. Rev.B 23, 5384 (1981);Google Scholar
Allen, P.B., Broughton, J.Q. and McMahan, A.K., Phys. Rev.B 34, 859 (1986).Google Scholar
12. Kauffer, E., Pécheur, P., Gerì, M. J. Phys. C9, 2319 (1976).Google Scholar
13. Tserbak, C., Polatoglou, H.M., and Theodorou, G., Phys. Rev. B 47, 7104 (1993).Google Scholar
14. Proot, J.P., Delerue, C. and Allan, G., Appl. Phys. Lett. 61, 1948 (1992);Google Scholar
Delerue, C., Allan, G. and Lannoo, M., Phys. Rev.B 48, 11024 (1993).Google Scholar
15. Delerue, C., Allan, G., and Lannoo, M., “Light Emission in Solids: From Physics to Devices”, Lockwood, Ed., “Semiconductors and Semimetals” Vol. 49, Academic Press (London - 1998).Google Scholar
16. Delley, B. and Steigmeier, E.F., Appl. Phys. Lett. 67, 2370 (1995).Google Scholar
17. Lockwood, D.J., Solid State Communications 92, 101 (1994).Google Scholar
18. Ehbrecht, M., Kohn, B., Huisken, F., Laguna, M. A., and Paillard, V., Phys. Rev. B 56, 6958 (1997).Google Scholar
19. Koch, F., Petrova-Koch, V. and Muschik, T., Journal of Luminescence 57, 271 (1993).Google Scholar
20. Allan, G., Delerue, C., and Lannoo, M., Phys. Rev. Lett. 76, 2961 (1996).Google Scholar
21. Allan, G. (Unpublished results).Google Scholar
22. Allan, G., Delerue, C., and Lannoo, M., “Advances in Microscrystalline and Nanocrystalline Semiconductors -1996”, Fauchet, P. M., Shimizu, I., Collins, R. W., Alivisatos, P. A., Vial, J.-C., Shimada, T. Eds (Mat. Res. Soc. Proc. 452, Pittsburgh, PA, 1997) p. 75 Google Scholar
23. DMol User Guide, version 2.3.5. San Diego: Biosym Technologies, 1993.Google Scholar
24. Joannopoulos, J. D., and Cohen, M. L., Phys. Rev. B 7, 2644 (1973)Google Scholar
25. Chaney, R. C., Tung, T. K., Lin, C. C., and Lafon, E. E., J. Chem. Phys. 52, 361 (1970)Google Scholar
26. Troullier, N., and Martins, J.L., Solid State Comm. 74, 613 (1990).Google Scholar
27. Harrison, W. A., Electronic Structure and the Properties of Solids (Freeman, San Francisco, 1980).Google Scholar