Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T02:07:34.447Z Has data issue: false hasContentIssue false

Emission spectra study of plasma enhanced chemical vapor deposition of intrinsic, n+, and p+ amorphous silicon thin films

Published online by Cambridge University Press:  25 July 2013

I-Syuan Lee
Affiliation:
Thin Film Nano &Microelectronics Research Laboratory, Texas A&M University, College Station, TX, 77843
Yue Kuo
Affiliation:
Thin Film Nano &Microelectronics Research Laboratory, Texas A&M University, College Station, TX, 77843
Get access

Abstract

The PECVD intrinsic, n+, and p+ a-Si:H thin film deposition processes have been studied by the optical emission spectroscope to monitor the plasma phase chemistry. Process parameters, such as the plasma power, pressure, and gas flow rate, were correlated to SiH*, Hα*, and Hβ* optical intensities. For all films, the deposition rate increases with the increase of the SiH* intensity. For the doped films, the Hα*/SiH* ratio is a critical factor affecting the resistivity. The existence of PH3 or B2H6 in the feed stream enhances the deposition rate. Changes of the free radicals intensities can be used to explain variation of film characteristics under different deposition conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Bullock, J. N. and Wu, C. H., J. Appl. Phys., Vol. 69, p. 1041, 1991 CrossRefGoogle Scholar
Carlson, D. E. and Wronsky, C. R., Appl. Phys. Lett., Vol. 29, p. 602, 1976 Google Scholar
Kuo, Y., MRS Proc., Vol. 282, p. 197, 1985 Google Scholar
Kuo, Y., Appl. Phys. Lett., Vol. 71, p. 2821, 1997 CrossRefGoogle Scholar
Tochikubo, F, Suzuki, A, Kakuta, S, Terazono, Y and Makabe, T, Appl. Phys., Vol. 68, p. 5532, 1990 CrossRefGoogle Scholar
Jia, H., Saha, J.K., Ohse, N., and Shirai, H., J. Non-Cryst. Solids, Vol. 352, p. 896, 2006.CrossRefGoogle Scholar
Saito, K. and Kondo, M., Phys. Status Solidi A, Vol. 207, No. 3, p. 535, 2010.CrossRefGoogle Scholar
Ram, S. K., Kroely, L., Kasouit, S., Bulkin, P., and Cabarrocas, P. R., Phys. Status Solidi C, Vol. 7, No. 3-4, p. 553, 2010 Google Scholar
Tsai, C. C., Thompson, R., Doland, C., Ponce, F.A., Anderson, G. B., and Wacker, B., Mat. Res. Soc. Symp. Proc., Vol. 118, p. 49, 1988 CrossRefGoogle Scholar
Kroll, U., Meier, J., and Shah, A., Appl. Phys., Vol. 80, p. 4971, 1996.CrossRefGoogle Scholar
Matsuda, A., J.J.A.P., Vol. 43, p. 7909, 2004 Google Scholar
Perrin, J. and Schmitt, J.P.M., Chemical Physics, Vol. 67, p. 167, 1982 CrossRefGoogle Scholar
Yang, H., Wu, C., Huang, J., Ding, R., Zhao, Y., Geng, X., and Xiong, S., Thin Solid Films, Vol. 472, p. 125, 2005 CrossRefGoogle Scholar
Spear, W. E. and Le Comber, P. G., Philos. Mag., Vol. 33, p. 935, 1976.CrossRefGoogle Scholar
Street, R. A., Hydrogenated Amorphous Silicon, Cambridge University Press, 1992.Google Scholar
Brodsky, M. H., Cardona, M., and Cuomo, J. J., Phys. Rev. B, Vol. 16, p. 3556, 1997.CrossRefGoogle Scholar
Nominanda, H. and Kuo, Y., Electrochem. Soc. Proc., Vol. 17, p. 19, 2002.Google Scholar
Hay, P. J., Boehm, R. C., Kress, J. D., Martin, R. L., Surf. Sci., Vol. 436, p. 175, 1999 CrossRefGoogle Scholar
Nominanda, H. and Kuo, Y., Electrochem. Soc. Proc., Vol. 17, p. 19, 2002.Google Scholar