Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T02:57:30.628Z Has data issue: false hasContentIssue false

Electron Spin Resonance Characterization of Defects at Interfaces in Stacks of Ultrathin High-κ Dielectric Layers on Silicon

Published online by Cambridge University Press:  01 February 2011

A. L. Stesmans
Affiliation:
Department of Physics and Astronomy, University of Leuven Celestijnenlaan 200D, 3001 Leuven, Belgium
V.V. Afanas'ev
Affiliation:
Department of Physics and Astronomy, University of Leuven Celestijnenlaan 200D, 3001 Leuven, Belgium
Get access

Abstract

Electron spin resonance (ESR) analysis of (100)Si/SiOx/ZrO2, (100)Si/Al2O3 and Si/HfO2 structures with nm-thin dielectric layers deposited by different chemical vapor deposition procedures reveals, after hydrogen detachment, the presence of the trivalent Si dangling-bond-type centers Pb0, Pb1 as prominent defects in all entities. This Pb0, Pb1 fingerprint, generally unique for the thermal (100)Si/SiO2 interface, indicates that the as-deposited (100)Si/metal oxides interface is basically Si/SiO2-like. Though sensitive to the deposition process, the Pb0 density is found to be substantially larger than in standard (100)Si/SiO2. As probed by the Pb- type center properties, the Si/dielectric interfaces of all structures are under enhanced (unrelaxed) stress, typical for low temperature Si/SiO2 growth. Standard quality thermal Si/SiO2 properties in terms of Pb signature may be approached by appropriate annealing (≥ 650°C) in vacuum in the case of (100)Si/SiOx/ZrO2. Yet, O2 ambient appears required for Si/Al2O3 and Si/HfO2. It appears that Si/high-κ metal oxide structures with device grade quality interfaces can be realized with sub-nm thin SiOx interlayers. The density of fast interface states closely matches the Pb0 density variations, suggesting the center as the dominant fast interface trap. They may be efficiently passivated in H2 at 400 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] See The International Technology Roadmap for Semiconductors 2001, Semiconductor Industry Association SIA, San Jose, Calif.)Google Scholar
[2] Buchanan, D.A. and Lo, S.H., Microelectron. Eng. 36, 13 (1997).Google Scholar
[3] Buchanan, D.A., IBM J. Res. and Develop. 43, 245 (1999).Google Scholar
[4] Green, M. L., Gusev, E. P., Degraeve, R., and Garfunkel, E. L., J. Appl. Phys. 90, 2057 (2001)Google Scholar
[5] Green, M.L., Sorsch, T.W., Timp, G.L., Muller, D.A., Weir, B.E., Silverman, P.J., Moccio, S.V., and Kim, Y.O., Microelectron. Eng. 48, 117 (1999).Google Scholar
[6] Lucovsky, G. et al., Appl. Phys. Lett., 74, 2005 (1999).Google Scholar
[7] Peacock, P. W. and Robertson, J., J. Appl. Phys. 92, 4712 (2002).Google Scholar
[8] Wilk, G. D., Wallace, R. M., and Anthony, J. M., J. Appl. Phys. 89 5243 (2001)Google Scholar
[9] Gusev, E. P. in Defects in SiO2 and Related Dielectrics; Science and Technology, NATO Science Series, edited by Pacchioni, G., Skuja, L., and Griscom, D. L. (Kluwer, Dordrecht, 2000) p. 557.Google Scholar
[10] Gusev, E. P., Cartier, E., Buchanan, D. A., Gribelyuk, M., Copel, M., Okorn-Schmidt, H., and D'Emic, C., Microelectron. Eng. 59, 341 (2001)Google Scholar
[11] Gusev, E.P., Copel, M., Cartier, E., Baumvol, I.J.R., Krug, C., and Gribelyuk, M.A., Appl. Phys. Lett. 76, 176 (2000).Google Scholar
[12] Krug, C.R., da Rosa, E.B., de Almeida, R.M., Morais, J., Baumvol, I.J., Salgado, T. D.M., and Stedile, F.C., Phys. Rev. Lett. 85, 4120 (2000).Google Scholar
[13] Houssa, M., Naili, M., Zhao, C., Bender, H., Heyns, M.M., and Stesmans, A., Semicond. Sci Technol. 16, 31 (2001).Google Scholar
[14] Kirsch, P. D., Kang, C. S., Lozano, J., Lee, J. C., and Ekerdt, J. G., J. Appl. Phys. 91 4353 (2002).Google Scholar
[15] Gallas, B., Brunet-Bruneau, A., Fisson, S., Vuye, G. and Rivory, J., J. Appl. Phys. 92 1922 (2002).Google Scholar
[16] Nishikawa, Y., Yamaguchi, T., Yoshiki, M., Satake, H., and Fukushima, N., Appl. Phys. Lett. 81 4386 (2002).Google Scholar
[17] Visokay, M. R., Chambers, J. J., Rotondaro, A. L. P., Shanware, A., and Colombo, L., Appl Phys. Lett. 80 3183 (2002).Google Scholar
[18] Cho, M.-H., Roh, Y. S., Whang, N., Jeong, K., Choi, H. J., Nam, S. W., Ko, D.-H., Lee, J. H., Lee, N. I., and Fujihara, K. K, Appl. Phys. Lett. 81 1071 (2002).Google Scholar
[19] Copel, M., Gribelyuk, M. and Gusev, E., Appl. Phys. Lett. 76, 436 (2000).Google Scholar
[20] Houssa, M., Tuominen, M., Naili, N., Afanas'ev, V., Stesmans, A., Haukka, S., and Heyns, M.M., J. Appl. Phys. 87, 8615 (2000).Google Scholar
[21] Copel, M., Appl. Phys. Lett. 82, 1580 (2003)Google Scholar
[22] Lee, J.-Ho and Ichikawa, M., J. Appl. Phys. 92, 1929 (2002)Google Scholar
[23] Gutowski, M., Jaffe, J. E., Liu, C.-Li, Stoker, M., Hegde, R. I., Rai, R. S., and Tobin, P. J., Appl. Phys. Lett. 80, 1897 (2002)Google Scholar
[24] Zafar, S., Callegari, A., Gusev, E., and Fischetti, M. V., Tech. Dig. – Int. Electron Devices Meeting 2002, 517 (2002)Google Scholar
[25] Zhu, W. J. and Ma, T. P., IEEE Electron Device Lett. 23, 597 (2002)Google Scholar
[26] Ludeke, R., Cuberes, M. T., and Cartier, E., Appl. Phys. Lett. 76, 2886 (2000)Google Scholar
[27] Helms, R. and Poindexter, E.H., Rep. Prog. Phys. 57, 791 (1994).Google Scholar
[28] Brower, K. L., Appl. Phys. Lett. 43 1111 (1983).Google Scholar
[29] Stesmans, A., Nouwen, B., and Afanas'ev, V., Phys. Rev. B 58, 15801 (1998).Google Scholar
[30] Poindexter, E. H., Semicond. Sci. Technol. 4 961 (1989).Google Scholar
[31] Gerardi, G. J., Poindexter, E. H., Caplan, P. J., and Johnson, N. M., Appl. Phys. Lett. 49 34 (1986).Google Scholar
[32] Stesmans, A. and Afanas'ev, V. V., Phys. Rev. B 57, 10030 (1998).Google Scholar
[33] Stesmans, A., Phys. Rev. B 48, 2418 (1993).Google Scholar
[34] Stesmans, A. and Afanas'ev, V. V., J. Appl. Phys. 83, 2449 (1998).Google Scholar
[35] Futako, W., Nishizawa, M., Yasuda, T., Isoya, J., and Yamasaki, S., in International Workshop on Gate Insulators, Edited by Ohmi, S., Fujita, K., and Momose, H. S. (Jap. Soc Appl. Phys., Tokyo, 2001) p. 130.Google Scholar
[36] Brower, K. L., Phys. Rev. B 38, 9657 (1988).Google Scholar
[37] Brower, K. L., Phys; rev. B 42, 3444 (1990)Google Scholar
[38] Stesmans, A., Appl. Phys. Lett. 68, 2723 (1996); 68, 2076 (1996)Google Scholar
[39] Stesmans, A., J. Appl. Phys. 88, 489 (2000).Google Scholar
[40] Hot-wall flow-type F-450 reactor, ASM Microchemistry Ltd., Finland.Google Scholar
[41] Campbell, S. A., Ma, T. Z., Smith, R., Gladfelter, W. L., and Chen, F., Microelectron. Eng. 59, 361 (2001).Google Scholar
[42] Pankove, J. I., Carlson, D. E., Berkeyheiser, J. E., and Wance, R. O., Phys. Rev. Lett. 51, 2224 (1983).Google Scholar
[43] Griscom, D. L., J. Appl. Phys. 58, 2524 (1958), and references therein.Google Scholar
[44] Edwards, A. H., J. Non-Cryst. Solids 187, 232 (1995).Google Scholar
[45] Pusel, A., Wetterauer, U. and Hess, P., Phys. Rev. Lett. 81, 645 (1998).Google Scholar
[46] Cantin, J. L. and von Bardeleben, H. J., J. Non-Cryst. Solids 175–178, 175 (2002).Google Scholar
[47] Stesmans, A. and Afanas'ev, V. V., Appl. Phys. Lett. 77, 2924 (2000).Google Scholar
[48] Stesmans, A. and Afanas'ev, V. V., J. Phys.: Condens. Matter 13, L673 (2001).Google Scholar
[49] Brower, K. L., Phys. Rev. B 33, 4471 (1986).Google Scholar
[50] Kang, A. Y., Lenahan, P. M., and Conley, J. F. Jr, Appl. Phys. Lett. 83, 3407 (2003)Google Scholar
[51] Stesmans, A., J. Appl. Phys. 92, 1317 (2002)Google Scholar