Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:29:16.128Z Has data issue: false hasContentIssue false

Electromigration and Diffusion in Pure Cu and Cu(Sn) Alloys

Published online by Cambridge University Press:  15 February 2011

C.-K. Hu
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598., [email protected]
K. L. Lee
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598., [email protected]
D. Gupta
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598., [email protected]
P. Blauner
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598., [email protected]
Get access

Abstract

Atom movements of Cu in pure Cu and Cu(0.5 to 2 wt.% Sn) alloys have been investigated using drift velocity and radioactive tracer techniques. The void growth rate in pure Cu at the cathode end, as a result of electromigration driving force, linearly increases with the applied current density. A marked decrease in the Cu grain boundary diffusivity and electromigration drift velocity is attributed to Sn trapping of Cu atoms and/or binding defects at grain boundaries. The effect is more pronounced at lower temperatures. The activation energies for electromigration and diffusion of Cu in pure Cu grain boundaries were found to be in the range of 0.7 - 0.9 eV. Addition of about 0.5 to 2 wt.% Sn increased these energies to 1.1 - 1.3 eV, respectively which resulted in enhancement of electromigration resistance by several orders of magnitude over that in pure Cu at the field operation temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refereces

1. Paraszczak, J., Edelstein, D., Cohen, S., Babich, E., Hummel, J., IEEE International Electron Devices Metting, (1993) p.261.Google Scholar
2. Park, C. W. and Vook, R. W., Appl. Phy. Lett. 59, 175 (1991).Google Scholar
3. Hu, C.-K., Luther, B., Kaufman, F. B., Hummel, J., Uzoh, C., and Pearson, D. J., Thin Solid Film, 262, 84 (1995).Google Scholar
4. Lee, K. L., Hu, C.-K. and Tu, K. N, J. Appl. Phys., 78, 4428 (1995).Google Scholar
5. C.-K. Hu,Lee, K.Y., Lee, K.L., Cabral, C. Jr., Colgan, E. G. and Stanis, C., J. Electrochem. Soc., 143, 1001 (1996).Google Scholar
6. Park, C. W. and Vook, R. W., Thin Solid Films, 226, 238 (1993).Google Scholar
7. Estabil, J., Rathore, H. R., and Levine, E. N., Proc. of 8th Int'l VLSI Multilevel Interconnections Conf., Santa Clara, p.242, IEEE, NY 1991.Google Scholar
8. Hu, C.-K., Rodbell, K., Sullivan, T., Lee, K. Y., and Bouldin, D., J. IBM Res. Develop., 39, 465 (1995).Google Scholar
9. Ghate, P. B., in Proc. of 19th International Rel. Phys. Symp. (IEEE, NY, 1981) p.243.Google Scholar
10. Oates, T. A., Martin, E. P., Alugbin, D., and Nkansah, F., Appl. Phys. Lett., 62, 3273 (1993).Google Scholar
11. Blech, I. A., J. Appl. Phys.,47 (176) 1203.Google Scholar
12. Schreiber, H.-U., Solid-State Electonics, 29, 893 (1986).Google Scholar
13. Gupta, D., Diffusion Phenomenon in Thin Films and Microelectronic Materials, Eds.Gupta, D. and Ho, P. S.(Noyes Pub., Park Ridge NJ, 1988), pp. 172 Google Scholar
14. Chow, M. M., Guthrie, W. L., Cronin, J. E., Kanta, C. W., Luther, B., Perry, K. A., Stanley, C. L., US Patent 4,789,648 (1988).Google Scholar
15. Tracy, D. P., and Knorr, D. B., J. Electronic Mat, 22, 611 (1993).Google Scholar
16. Valenzuela, C. G., TMS-AIME, 233, 1911 (1965).Google Scholar
17. McLean, D., Grain Boundaries in Metals, (Oxford University Press, London, 1957) p.76.Google Scholar
18. Whipple, R. T. P., Philos. Mag., 45, 1225 (1954).Google Scholar
19. Suzuoka, T., Trans. Jpn. Inst. Metahl., 2, 25 (1961).Google Scholar
20. Rothman, S. J. and Peterson, N. L., Phys. Stat. Solidi, 35, 305 (1969).Google Scholar
21. Rheinhold, U., Neidhard, A., Krautheim, G. and Zeke, A., Phys. Stat. Solidi, A62, 255 (1980).Google Scholar
22. Surholt, T., Mishin, Yu. M. and Herzig, Ch., Phys. Rev., B 50, 357 (1994).Google Scholar
23. Huntington, H. B., in Diffusion in Solids: Recent developments, Nowick, A. S., and Burton, J. J., Editors, (Academic, NY, 1974), Chap. 4.Google Scholar
24. Lloyd, J. R., and Clement, J. J., Thin Solid Films, 262, 135 (1995).Google Scholar
25. Gupta, D., Metall. Trans., 8A, 1431 (1977).Google Scholar
26. Gupta, D., Canadian Metallurgical Quarterly, 34, 175 (1995).Google Scholar
27. Rosenberg, R., J. Vac. Sci. Technol., 9, 263 (1971).Google Scholar
28. Hu, C.-K., and Huntington, H. B., in Gupta, D., and Ho, P. S. (ed.), Diffusion Phenomena in Thin Films and Microelectronic Materials, (Noyes, Park Ridge, NJ, 1988), Chap. 10.Google Scholar
29. Ma, Q. M., Liu, C. L., Adams, J. B., and Balluffi, R. W., Acta Metall. Mater., 41, 143 (1993).Google Scholar