Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T06:56:45.995Z Has data issue: false hasContentIssue false

Electrical Properties of Schottky Contacts of TiW on RTCVD Si1-x-yGexCy Films

Published online by Cambridge University Press:  10 February 2011

Jian Mi
Affiliation:
Microelectronics Laboratory, Santa Clara University, Santa Clara, CA 95053
Yilu Zhang
Affiliation:
Microelectronics Laboratory, Santa Clara University, Santa Clara, CA 95053
Patricia Warren
Affiliation:
Institute for Micro- and Optoelectronics Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland
Cary Y. Yang
Affiliation:
Microelectronics Laboratory, Santa Clara University, Santa Clara, CA 95053
Get access

Abstract

High-quality epitaxial Si1-x-yGexCy layers were grown on Si by rapid thermal chemical vapor deposition. Schottky diodes of TiW/SiGeC were fabricated using conventional Si processes. I-V and C-V measurements were performed to assess effects of crystal defects in the alloy on the electrical properties. For defective SiGeC films due to non-substitutional carbon, high series resistance and additional tunneling current were measured under forward bias, as well as leakage current under reverse bias. A transport mechanism of deep generation/recombination centers formed by carbon complexes is proposed to explain the I-V characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jain, S. C., Osten, H. J., Dietrich, B., and Hrücker, , Semicond. Sci. Technol. 10, 1289 (1995).Google Scholar
2. Mi, J., Warren, P., Letourneau, P., Judelewicz, M., Gailhanou, M., Dutoit, M., Dubois, C., and Dupuy, J. C., Appl. Phys. Lett. 67, 259 (1995).Google Scholar
3. Lanzerotti, L. D, Amour, A. St., Liu, C. W., Sturm, J. C., Watanabe, J. K., and Theodore, N. D., IEEE Electron Device Lett. 17, 334 (1996).Google Scholar
4. Ray, S. K., John, S., Oswal, S., and Banerjiee, S. K., 1996 IEDM Tech. Digest, p. 261.Google Scholar
5. Huang, F. Y., Thomas, S. G., Chu, M., and Wang, K. L., 1996 IEDM Tech. Digest, p. 665.Google Scholar
6. Soref, R. A., Atzman, Z., Shaapur, F., Robinson, M., and Westhoff, R., Optics Lett. 21, 345 (1996).Google Scholar
7. Iyer, S. S., Eberl, K., Groorsky, M. S., LeGoues, F. K., and Tsang, T. C., Appl. Phys. Lett. 60, 356(1992).Google Scholar
8. Mi, J., Warren, P., Letourneau, P., Jedelewicz, M., Gailhanou, M.,, Dutoit, M., Dubois, C., and Dupuy, J. C., Appl. Phys. Lett. 67, 259 (1995)Google Scholar
9. Annual Book of ASTM Standards (ASTM, Philadelphia, 1981) F 120, p. 543.Google Scholar
10. Spitzer, W. G., Phys. Rev. 113, 133 (1959).Google Scholar
11. Candelaria, J. J., Watanabe, J. K., Theodore, N. D., Gregory, R. B., Schroder, D. K., Stout, L. M., and Cave, N. G., Mat. Res. Soc. Symp. Proc. 321, 473 (1994).Google Scholar
12. Mi, J., Warren, P., Gailhanou, M., Ganiere, J.-D., Dutoit, M., Jouneau, P.-H., and Houriet, R., J. Vac. Sci. Technol. B 14, 1660 (1996).Google Scholar
13. Sze, S. M., Physics of Semiconductor Devices (Wiley, New York, 1981), Chap. 5.Google Scholar
14. Auret, F. D., Nel, M., and Bojarczuk, N. A., J. Vac. Sci. Technol. B 4, 1168 (1986).Google Scholar
15. Davis, G. and Newman, R. C, Carbon in Monocrystalline Silicon, in Handbook on Semiconductor. Vol. 3, edited by Moss, T. S. (Elsevier, New York, 1994).Google Scholar