Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T07:27:47.703Z Has data issue: false hasContentIssue false

Electrical Characterization of Thick InGaN Films for Photovoltaic Applications

Published online by Cambridge University Press:  17 February 2014

Yoshitaka Nakano
Affiliation:
Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
Liwen Sang
Affiliation:
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Masatomo Sumiya
Affiliation:
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Get access

Abstract

We have electrically characterized a 300 nm-thick unintentionally-doped In0.09Ga0.91N film grown by metal-organic chemical vapor deposition on a GaN template, employing capacitance-voltage (C-V), thermal admittance spectroscopy (TAS), and steady-state photocapacitance spectroscopy (SSPC) techniques on Schottky barrier diodes. TAS measurements revealed a degenerating-like shallow-donor defect with a thermal activation energy of ∼7 meV, which most likely acts as a source of residual carriers with their concentration of ∼1017 cm-3 determined from C-V measurements. Additionally, SSPC measurements revealed two characteristic deep-level defects located at ∼2.07 and ∼3.05 eV below the conduction band, which were densely enhanced near the underlayer. These electronic defects are probably introduced by alloying InN with GaN.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Davydov, V. Yu., Klochikhin, A. A., Seisyan, R. P., Emtsev, V. V., Ivanov, S. V., Bechstedt, F., Furthmüller, J., Harima, H., Mudryi, A. V., Aderhold, J., Semchinova, O., and Graul, J., Phys. Status Solidi B 229, R1 (2002).3.0.CO;2-O>CrossRefGoogle Scholar
Wu, J., Walukiewicz, W. W., Yu, K. M., Ager, J. W. III, Haller, E. E., Lu, H., Schaff, W. J., Saito, Y., and Nanishi, Y., Appl. Phys. Lett. 80, 3967 (2002).CrossRefGoogle Scholar
Jani, O., Ferguson, I., Honsberg, C., Kurtz, S., Appl. Phys. Lett. 91, 132117 (2007).CrossRefGoogle Scholar
Wu, J., Walukiewicz, W., Yu, K. M., Shan, W., Ager, J. W. III, Haller, E. E., Lu, H., Schaff, W. J., Metzger, W. K., Kurtz, S., J. App. Phys. 94, 6477 (2003).CrossRefGoogle Scholar
Neufeld, C. J., Toledo, N. G., Cruz, S. C., Iza, M., DenBaars, S. P., Mishra, U. K., Appl. Phys. Lett. 93, 143502 (2008).CrossRefGoogle Scholar
Kawaguchi, Y., Shimizu, M., Yamaguchi, M., Hiramatsu, K., Sawaki, N., Taki, W., Tsuda, H., Kuwano, N., Oki, K., Zheleva, T., Davis, R. F., J. Crystal Growth 189/190, 24 (1998).CrossRefGoogle Scholar
Sang, L., Takeguchi, M., Woong, L., Nakayama, Y., Lozac’h, M., Sekiguchi, T., Sumiya, M., Appl. Phys. Express 3, 111004 (2010).CrossRefGoogle Scholar
Nakano, Y., Irokawa, Y., Sumida, Y., Yagi, S., Kawai, H., J. Appl. Phys. 112, 106103 (2012).CrossRefGoogle Scholar
Armstrong, A., Arehart, A. R., Moran, B., DenBaars, S. P., Mishra, U. K., Speck, J. S., Ringel, S. A., Appl. Phys. Lett. 84, 374 (2004).CrossRefGoogle Scholar
Son, N. T., Hemmingsson, C. G., Paskova, T., Evans, K. R., Usui, A., Morishita, N., Ohshima, T., Isoya, J., Monemar, B., Janzen, E., Phys. Rev. B 80, 153202 (2009).CrossRefGoogle Scholar
Obata, T., Iwata, J., Shiraishi, K., Oshiyama, A., J. Crystal Growth 311, 2772 (2009).CrossRefGoogle Scholar
Li, C., Wu, F., Li, S.-S., Xia, J.-B., Li, J., Appl. Phys. Lett. 101, 062102 (2012).CrossRefGoogle Scholar
Uedono, A., Ishibashi, S., Watanabe, T., Wang, X. Q., Liu, S. T., Chen, G., Sang, L. W., Sumiya, M., Shen, B., J. Appl. Phys. 112, 014507 (2012).CrossRefGoogle Scholar