No CrossRef data available.
Article contents
Electrical Characterization of Thick InGaN Films for Photovoltaic Applications
Published online by Cambridge University Press: 17 February 2014
Abstract
We have electrically characterized a 300 nm-thick unintentionally-doped In0.09Ga0.91N film grown by metal-organic chemical vapor deposition on a GaN template, employing capacitance-voltage (C-V), thermal admittance spectroscopy (TAS), and steady-state photocapacitance spectroscopy (SSPC) techniques on Schottky barrier diodes. TAS measurements revealed a degenerating-like shallow-donor defect with a thermal activation energy of ∼7 meV, which most likely acts as a source of residual carriers with their concentration of ∼1017 cm-3 determined from C-V measurements. Additionally, SSPC measurements revealed two characteristic deep-level defects located at ∼2.07 and ∼3.05 eV below the conduction band, which were densely enhanced near the underlayer. These electronic defects are probably introduced by alloying InN with GaN.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2014