Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:32:04.097Z Has data issue: false hasContentIssue false

Effects of a Ta Interlayer on the Titanium Silicide Reaction: C40 Formation and Higher Scalability of the TiSi2 Process.

Published online by Cambridge University Press:  21 March 2011

F. La Via
Affiliation:
CNR-IMETEM, Stradale Primosole 50, Catania, Italy
S. Privitera
Affiliation:
INFM and Physics Department, Corso Italia 57, Catania, Italy
F. Mammoliti
Affiliation:
INFM and Physics Department, Corso Italia 57, Catania, Italy
M.G. Grimaldi
Affiliation:
INFM and Physics Department, Corso Italia 57, Catania, Italy
Get access

Abstract

When a Ta layer is deposited at the Si/Ti interface a new phase has been detected, i.e. theTiSi2C40. The C40-C54 transformation kinetics and the film morphology are consistent with an increase of the nucleation density with respect to the C49-C54 transition. The activation energies for the nucleation rate (4.2±0.3 eV) and the growth velocity (4.0±0.4 eV) have been obtained from the in situ sheet resistance and the Transmission Electron Microscopy results. These results show that the process with a Ta layer at the Ti/Si interface has a greater scalability with respect to the standard TiSi2 process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[i] Beyers, R. and Sinclair, R., J. Appl. Phys. 57, 5240 (1985).Google Scholar
[ii] Privitera, S., Via, F. La, Grimaldi, M.G. and Rimini, E., Appl. Phys. Lett. 73(26),3863 (1998).Google Scholar
[iii] Mann, R.W., Miles, G.L., Knotts, T.A., Rakowski, D.W., Clevenger, L.A., Harper, J.M.E., D'Heurle, F.M., Cabral, C. Jr Appl. Phys. Lett. 67, 3729 (1995).Google Scholar
[iv] Cabral, C., Clevenger, L.A., Harper, J.M.E., d'Heurle, F.M., Roy, R., Lavoie, C. and Saenger, K., Appl. Phys. Lett. 71(24), 3531 (1997).Google Scholar
[v] Moroux, A., Zhang, S.L., Kaplan, W., Nygren, S., Östling, M. and Peterson, C.S., Appl. Phys. Lett. 69(7), 975 (1996).10.1063/1.117100Google Scholar
[vi] Kittl, J.A., Gribelyuk, M.A. and Samavedam, S.B., Appl. Phys. Lett. 73(7), 900902 (1998).Google Scholar
[vii] Moroux, A., Epicier, T., Zhang, S.L. and Pinard, P., Physical Review B 60(12), 91659168 (1999).Google Scholar
[viii] Via, F. La, Mammoliti, F., Grimaldi, M.G., Quilici, S. and Meinardi, F., Micoelectronic Engineering, 55 (1-4), 123 (2001)Google Scholar
[ix] Via, F. La, Mammoliti, F., Corallo, G., Grimaldi, M.G., Miglio, L. and Migas, D., Appl. Phys. Lett., 78(13) 1864 (2001).Google Scholar
[x] Privitera, S., Spinella, C., Via, F. La, Grimaldi, M.G., and Rimini, E., Appl. Phys. Lett. 78(11), 1514 (2001).Google Scholar
[xi] Privitera, S., Via, F. La, Spinella, C., Quilici, S., Borghesi, A., Meinardi, F., Grimaldi, M.G. and Rimini, E., J. Appl. Phys. 88(12), 7013 (2000)Google Scholar