Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:49:14.123Z Has data issue: false hasContentIssue false

Effect of lateral dimension scaling on thermal stability of thin CoSi2 layers on polysilicon implanted with Si

Published online by Cambridge University Press:  10 February 2011

F. La Via
Affiliation:
CNR-IMETEM, Stradale Primosole 50, Catania, Italy
A. Alberti
Affiliation:
Physics Department, Catania University, Corso Italia 57, Catania, Italy
M. G. Grimaldi
Affiliation:
Physics Department, Catania University, Corso Italia 57, Catania, Italy
S. Ravesi
Affiliation:
S-T Microelectronics, Stradale Primosole 50, Catania, Italy
Get access

Abstract

The thermal stability of patterned cobalt silicide layers grown on amorphous silicon has been studied in the temperature range between 850 and 1000 °C. The degradation of patterned CoSi2, detected by resistance measurements, occurs via grain agglomeration at a temperature ∼100 °C lower than in blanket film. The reduction of the stability window in patterned samples is due to geometric constraints,. which results in a greater growth rate of the median grains with respect to lateral grains.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Colgan, E.G., Gambino, J.P. and Hong, Q.Z., Materials Science and Engineering, R 16, 43 (1996).Google Scholar
2 Hong, Q.Z., Hong, S.Q., D'Heurle, F.M. and Harper, J.M.E., Thin Solid Films, 253, 479 (1994).Google Scholar
3 Wang, Q.F., Osburn, C.M., Smith, P.L., Canovai, C. A. and McGuire, G.E., J. Electrochem. Soc. 140, 200 (1993).Google Scholar
4 Karlin, T.E., Zhang, S.L., Rydén, K.H., Nygren, S., Östling, M. anf D'Heurle, F.M., Appl. Surf. Sci., 73, 277 (1993).Google Scholar
5 Lasky, J.B., Nakos, J.S., Cain, O.J. and Geiss, P.J., IEEE Trans. on Electron Devices, 38(2), 262 (1991).10.1109/16.69904Google Scholar
6 Via, F. La and Rimini, E., IEEE Trans. Electron Devices, 44(4), 526 (1997).Google Scholar
7 Via, F. La, Reader, A.H., Duchateau, J.P.W.B., Naburgh, E.P., Oostra, D.J. and Kinneging, A.J., J. Vac. Sci. Technol. B 10(5), 2284 (1992).Google Scholar
8 Via, F. La, Spinella, C., Reader, A.H., Ducheteau, J.P.W.B., Hakvoort, R.A. and van Veen, A., J. Vac. Sci. Technol. B 11(5), 1807 (1993).Google Scholar
9 Lawrence, M., Dass, A., Fraser, D.B. and Wei, C.S., Appl. Phys. Lett. 58(12), 1308 (1991).Google Scholar
10 Hsia, S.L., Tan, T.Y., Smith, P. and McGuire, G.E., J. Appl. Phys. 72(5), 1864.Google Scholar
11 Chen, W. M., Banerjee, S.K. and Lee, J.C., Appl. Phys. Lett. 64(12), 1505 (1994).10.1063/1.111873Google Scholar
12 Wang, Q.F., Tsai, J.Y., Osburn, C.M., Chapman, R. and McGuire, G.E., Appl. Phys. Lett. 61(24), 2920 (1992).Google Scholar
13 Chen, B.S. and Chen, M.C., J. Appl. Phys. 74(2), 1035 (1993).Google Scholar
14 Via, F. La, Alberti, A., Raineri, V., Ravesi, S. and Rimini, E., Microelectronics Enginering 37/38, 475 (1997).Google Scholar
14 Via, F. La, Alberti, A., Raineri, V., Ravesi, S. and Rimini, E., J. Vac. Sci. Technol. in press.Google Scholar