Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T01:54:16.235Z Has data issue: false hasContentIssue false

Diffusion Barriers for Mobile Ions in 256M DRAMs

Published online by Cambridge University Press:  10 February 2011

J. P. Gambino
Affiliation:
IBM Microelectronics, Hopewell Junction, NY 12533
C. C. Parks
Affiliation:
IBM Analytical Services, Hopewell Junction, NY 12533
S. Hegde
Affiliation:
IBM Microelectronics, Hopewell Junction, NY 12533
A. G. Domenicucci
Affiliation:
IBM Analytical Services, Hopewell Junction, NY 12533
Get access

Abstract

In this study, we investigate the diffusion of mobile ions through thin PSG or SiN layers using secondary ion mass spectrometry (SIMS). The diffusivity of Na through either layer is about 100,000X slower than through SiO2. Hence, thin layers of these materials are effective barriers for short anneals at 400°C. However, there is significant diffusion of both Na and K through these layers at 550°C. This suggests that improved cleans will be required to remove mobile ion contamination after interconnect processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Snow, E.H., Grove, A.S., Deal, B.E., Sah, C.T., J. Appl. Phys., 30, 1164 (1965).Google Scholar
2. Schnable, G.L., Schlesier, K.M., Wu, C.P., Comizzoli, R.B., J. Electrochem. Soc., 141, 3250 (1994).10.1149/1.2059313Google Scholar
3. Akiya, H., Saito, K., Kobayashi, K., Jap. J. Appl. Phys., 20, 647 (1981).10.1143/JJAP.20.647Google Scholar
4. Huynh, C.K. and Mitchener, J.C., J. Vac. Sci. Tech., B, 9 353 (1991).Google Scholar
5. Onishi, S., Matsuda, K., Tanaka, K., Sakiyama, K., in “Semiconductor Cleaning Technology 1989, Ed. Ruzyllo, J. and Novak, R.E., Electrochemical Society, Inc., Pennington, N.J., vol. 90–9, 1990, p. 141.Google Scholar
6. Han, S.H., Kim, S.-Y., Ahn, H.-G., Kim, H.-J., Kim, J.-H., Lee, J.-G., Ko, C.-G., in “Chemical Mechanical Planarization”, Ed. Ali, I. and Raghavan, S., Electrochemical Society, Inc., Pennington, N.J., vol. 96–22, 1996, p. 27.Google Scholar
7. Aslam, M., Artz, B.E., Kaberline, S.L., Prater, T.J., IEEE Trans. Elec. Dev., 40, 292 (1993).Google Scholar
8. Charache, G.W., Maby, E.W., Daubenspeck, T., Bakeman, P., J. Electrochem. Soc., 140, 1144 (1993).10.1149/1.2056213Google Scholar
9. Wu, T.H., Teitler, N.D., Hemmes, D.G., Harrus, A.S., in “Chemical Vapor Deposition 1993, Ed. Jensen, K.F. and Cullen, G.W., Electrochemical Society, Inc., Pennington, N.J., vol. 93–2, 1993, p. 313.Google Scholar
10. Kaplan, L.H. and Lowe, M.E., J. Electrochem. Soc., 118 1649 (1971).10.1149/1.2407803Google Scholar
11. Paulsen, R.E., Kyono, C. S., Wang, Y., Klein, K.M., Lim, I.-S., Tinkler, S., Bellamak, B., Odle, D.W., Zhou, Z., Dahl, P., Giovanetto, M., Makwana, J., Patel, S., Reno, C., Lenahan, P.M., Billman, C.A., IEEE Trans. Elec. Dev., 45, 655 (1998).10.1109/16.661227Google Scholar
12. Osenbach, J.W. and Voris, S.S., J. Appl. Phys., 63, 4494 (1988).10.1063/1.340144Google Scholar
13. Magee, C.W. and Harrington, W.L., Appl. Phys. Let., 33, 193 (1978).Google Scholar
14. Frischat, G.H., J. Am. Ceram. Soc., 51, 528 (1968).Google Scholar
15. Doremus, R.H., Phys. Chem. Glasses, 10 28 (1969).Google Scholar
16. Douglass, D.C., Duncan, T.M., Walker, K.L., Csencsits, R., J. Appl. Phys., 58, 197 (1985).10.1063/1.335708Google Scholar
17. Araujo, R.J. and Fehlner, F.P., J. Non-Cryst. Sol., 197, 154 (1996).10.1016/0022-3093(95)00632-XGoogle Scholar
18. Kahnt, H., J. Non-Cryst. Sol., 203, 225 (1996).Google Scholar
19. Bothra, S., Pramanick, D., Qian, L.Q., Harvey, I., Baker, D., Weiling, M., Sethi, S., Gabriel, C., Sengupta, S., Sur, H., Lin, X.., Proc. VMIC Conf., 43 (1997).Google Scholar