Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:41:47.289Z Has data issue: false hasContentIssue false

Dielectrics on Silicon Thermally Grown or Annealed in a Nitrogen Rich Environment

Published online by Cambridge University Press:  22 February 2011

H. Barry Harrison
Affiliation:
Griffith University, School of Microelectronic Engineering, Brisbane, Queensland, Australia
Andrew Misiura
Affiliation:
Griffith University, School of Microelectronic Engineering, Brisbane, Queensland, Australia
Sima Dimitrijev
Affiliation:
Griffith University, School of Microelectronic Engineering, Brisbane, Queensland, Australia
Denis Sweatman
Affiliation:
Griffith University, School of Microelectronic Engineering, Brisbane, Queensland, Australia
Z. Yao
Affiliation:
Griffith University, School of Microelectronic Engineering, Brisbane, Queensland, Australia
Y.T. Yeow
Affiliation:
The University of Queensland, St Lucia, Brisbane, Queensland, Australia
Get access

Abstract

In this paper we review various methods of improving the properties of extremely thin dielectrics (<20 nm) using a nitrogen rich environment. The three main gases considered being ammonia, and nitrous and nitric oxides. We present original results for nitric oxide exposed silicon and suggest that for ultra thin dielectric (<5 nm) that these layers are generally superior to any others, whilst for thicker layers oxides annealed in nitrous oxides appear to display the best properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hon, T. and Iwasaki, H., IEEE Elec. Device Lett., Vol. 10, p. 64, 1989.Google Scholar
2. Leo, T., Nakamura, T. and Ishikawa, H., IEEE Trans. Electron Devices, Vol. Ed–29, p. 498,1982.Google Scholar
3. Moslehi, M. and Saraswat, K.C., IEEE Trans. Electron Devices, Vol. Ed–32, p. 106, 1985.Google Scholar
4. Hwang, M., Ting, W., Maiti, B., Kwong, D.L. and Lee, T., Appl. Phys. Lett., Vol. 59, p. 1010,1990.CrossRefGoogle Scholar
5. Ting, W., Lo, G., Ahn, J., Chu, T. and Kwong, D.L., Proc. IEEE Reliability Phys Symp. p. 323, 1991.Google Scholar
6. Kooi, E., Lierop, J.G. Van and Appels, J.A., J. Electrochem Soc. 123, p. 1117, 1976.Google Scholar
7. Murarka, S.P., Chang, C.C. and Adams, A.C., J. Electrochem Soc. 126, p. 996, 1979.Google Scholar
8. Misiura, A. et.al., Dimitrijev, S., Sweatman, D., Yao, Z. and Harrison, H.B.. In press.Google Scholar
9. Kato, I., Ito, T., Inore, S., Nakamura, T. and Isikawa, M., Jpn J. Appl. Phys, Vol 21, Supp. 221, p. 152, 1982.Google Scholar
10. Haddard, S. and Liang, M., IEEE Electron Device Lett., Vol-EDL 8, p. 58, 1987.Google Scholar
11. Moslehi, M.M., Han, C.J., Saraswat, K.C., Helms, C.R. and Shatas, S., J. Electrochem Soc., Vol. 132, No. 9, p. 2189, 1985.CrossRefGoogle Scholar
12. Vasquez, R.P. and Madhukas, A., J. Appl. Phys. Vol. 60, p. 234, 1986.Google Scholar
13. Hod, T., Iwasaki, M., Naito, Y. and Esaki, M., IEEE Trans. Electron Devices, Vol. ED–34, p.2238,1987.Google Scholar
14. Henscheid, D., Kozlcki, M.N., Sheets, G.W., Ugual, M., Wreber, I.Z. and Graham, R., J. Electron Mater, Vol. 1.18, p. 99, 1989.Google Scholar
15. Ito, T., Arakawa, M., Nozaki, T. and Ishikawa, H., J. Electron Chem. Soc., Vol. 127, no. 10, p. 2248, 1980.Google Scholar
16. Kusaka, T., Hirajwa, A. and Mukai, K., J. Electrochem Soc., Vol. 135, no. 1, p. 166, 1988.Google Scholar
17. Hori, T., Iwaskai, M. and Tsuji, K., IEEE Trans. Electron Devices, Vol. 35, no. 7, p. 904, 1988.Google Scholar
18. Shih, D.E., Chang, W.T., Lee, S.K., Ku, y.J., Kwong, D.L and Lee, S., Appl. Phys Lett., Vol.. 52, no. 20, p. 1698, 1988.Google Scholar
19. Wright, P.J., Kermani, A. and Saraswat, K.C., IEEE Trans. on Electron Devices, Vol. 37, no. 8, p. 1836, 1990.Google Scholar
20. Ishikawa, Y., Takasi, Y. and Nakamichi, I., Jap. Journ of Appl. Phys., Vol. 28, p. L1453, 1989.Google Scholar
21. Fukuda, H., Arakawa, T. and Ohno, S., IEEE, IEDM Tech. Digest, p. 451, 1981.Google Scholar
22. Hwang, H., Ting, W., Maiti, B., Kwong, D.L. and Lee, J., Appl. Phys. Lett., 57, p. 1010, 1990.Google Scholar
23. Harrison, H.B., Dimitrijev, S., Sweatman, D., Misiura, A. and Reeves, G.K., MRS Symp. Proc. Vol. 303, p. 417, 1993.Google Scholar
24. Sun, S.C., Uno, T.S. and Chang, H.Y., Third International Symp on Proc Physics and Mod in Semiconductor Technology, Hawaii, 1993.Google Scholar
25. Tobin, P.J., Okada, Y., Ajuna, S.A., Lakhotia, V., Feit, W.A. and Hedge, R.I., J.Appl.Physics 75(3), P. 1811, 1994.Google Scholar
26.ICECREM 4.2, Fhg-Arbeitsgruppe fuer Integrierte Schauptungen, Abte; lung fur Bauelemente technologie Erlangen, 1994.Google Scholar
27. Sun, S.C. and Chang, H.Y., Simulation of Semiconductor Devices and Processes, Vol. 5, Vienna, 1993.Google Scholar
28. Harrison, H.B., Dimitrijev, S., Sweatman, D., Parker, J. and Preston, S, MRS Symp Proc. Vol. 33, p. 413, 1993.Google Scholar
29. Deal, B.E. and Grove, A.J., J. Appl Phys, 36, 3770, 1965.Google Scholar
30. Dimitrijev, S., Harrison, H.B. and Sweatman, D., Submitted for presentation at SPIE, Austin, Texas, September 1994.Google Scholar
31. Fukuda, H., Arakawa, T. and Ohno, S., Japanese Journal of Applied Physics, Vol. 29, no.. 12, p. 2333, 1990.CrossRefGoogle Scholar
32. Wiggins, M.D., Baird, R.J. and Wynblatt, P., J.Vac.Sci Technol, 18 (3), p. 965, 1981.Google Scholar
33. Yao, Z., Dimitrijev, S., Sweatman, D., Harrison, H.B. and Yeow, Y.T., accepted for publication in Appl. Phys. Letters.Google Scholar
34. Plummer, J.D. and Deal, B.E., NATO ASI series - E: Applied Sciences No. 62, p. 48, 1983.Google Scholar