Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T12:51:25.935Z Has data issue: false hasContentIssue false

Diamond Field-Effect Transistors

Published online by Cambridge University Press:  21 February 2011

David L. Dreifus
Affiliation:
Kobe Steel USA Inc., Electronic Materials Center, 79 TW Alexander Drive, Research Triangle Park, NC 27709
Alison J. Tessmer
Affiliation:
Kobe Steel USA Inc., Electronic Materials Center, 79 TW Alexander Drive, Research Triangle Park, NC 27709
Joseph S. Holmes
Affiliation:
Kobe Steel USA Inc., Electronic Materials Center, 79 TW Alexander Drive, Research Triangle Park, NC 27709
Chien-Teh Kao
Affiliation:
Kobe Steel USA Inc., Electronic Materials Center, 79 TW Alexander Drive, Research Triangle Park, NC 27709
Dean M. Malta
Affiliation:
Kobe Steel USA Inc., Electronic Materials Center, 79 TW Alexander Drive, Research Triangle Park, NC 27709
Linda S. Plano
Affiliation:
Kobe Steel USA Inc., Electronic Materials Center, 79 TW Alexander Drive, Research Triangle Park, NC 27709
Brian R. Stoner
Affiliation:
Kobe Steel USA Inc., Electronic Materials Center, 79 TW Alexander Drive, Research Triangle Park, NC 27709
Get access

Abstract

Metal-oxide-semiconductor field-effect transistors (FETs) have been fabricated using B-doped diamond thin films deposited on polycrystalline, (100) highly-oriented, and single crystal diamond insulating substrates. Diamond films were grown using a microwave plasma chemical vapor deposition technique. Various electrical and materials characterization techniques were employed to confirm that the films exhibited properties suitable for FET fabrication. Devices with gate lengths and widths of 2 μm and 314 μm respectively, were processed using standard photolithography. Silicon dioxide was used as the gate dielectric. Current-voltage characteristics of these devices have been measured during variable temperature cycling in air. Devices fabricated on the randomly oriented polycrystalline diamond substrates have been operated to 285°C. Field-effect transistors fabricated using the highly-oriented diamond substrates have been characterized to 400°C. Single crystal diamond devices exhibited saturation and pinch-off of the channel current at temperatures up to 500°C. These devices have been biased in amplifier circuit configurations that have been characterized from 20 Hz to 1 MHz. Single crystal FETs exhibited voltage gain over an extended temperature range. Transconductances as large as 1.7 mS/mm have been observed. The electronic properties, fabrication technologies, and performance of devices fabricated on the three diamond substrate materials will be discussed and compared.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Geis, M.W., Proc. of the IEEE 79, 669677 (1991).Google Scholar
2. Grot, S.A., Gildenblat, G.S. and Badzian, A.R., IEEE Elec. Dev. Lett. 13, 462464 (1992).Google Scholar
3. Trew, R.J., Yan, J.-B. and Mock, P.M., Proc. of IEEE 79, 598620 (1991).Google Scholar
4. Hewett, C.A., Zeisse, C.R., Nguyen, R. and Zeidler, J.R., Proceedings of the First International High Temperature Electronics Conference. Albuquerque, NM (1991)Google Scholar
5. Kobashi, K., Nishimura, K., Miyata, K., Nakamura, R., Koyama, H., Saito, K. and Dreifus, D.L., 2nd International Conference on the Applications of Diamond Films and Related Materials. Tokyo, Japan MYU, Japan (1993) 3542.Google Scholar
6. Shenai, K., Scott, R.S. and Baliga, B.J., IEEE Trans. Elect. Dev. 36, 18111823 (1989).Google Scholar
7. Fountain, G.G., et al., The Second International Symposium on Diamond Materials. Washington, DC The Electrochemical Society (1991) 523529.Google Scholar
8. Geis, M.W., Rathman, D.D., Ehrlich, D.J., Murphy, R.A. and Lindley, W.T., IEEE Elec. Dev. Lett. EDL- 8, 341343 (1987).Google Scholar
9. Shiomi, H., Nishibayashi, Y. and Fujimori, , Jpn. J. Appl. Phys. 28, L2153-L2154 (1989).Google Scholar
10. Zeidler, J.R., Hewett, C. A., Nguyen, R., Zeisse, C.R. and Wilson, R.G., Dia. and Rel. Mat. 2, 13411343 (1993).Google Scholar
11. Tsai, W., Delfino, M., Hodul, D., Riazat, M., Ching, L.Y., Reynolds, G. and Cooper, C.B. III, IEEE Elect. Dev. Lett. 12, 157159 (1991).Google Scholar
12. Buckley-Golder, L.M. and Collins, A.T., Dia. and Rel. Mat. 1, 10831101 (1992).Google Scholar
13. Collins, A.T., Semicond. Sci. Technol. 4, 605611 (1989).Google Scholar
14. Collins, A.T., Mat. Sci. and Eng. B 11, 257263 (1992).Google Scholar
15. Stoner, B.R. and Glass, J.T., Appl. Phys. Lett. 60, 698700 (1992).Google Scholar
16. Sato, Y., Fujita, H., Ando, T., Tanaka, T. and Kamo, M., Phil. Trans. R. Soc. Lond. 342, 3137 (1993).Google Scholar
17. Koizumi, S., Murakami, T., Inuzuka, T. and Suzuki, K., Appl. Phys. Lett. 57, 563565 (1990).Google Scholar
18. Yoshikawa, M., Ishida, H., Ishitani, A., Koizumi, S. and Inuzuka, T., Appl. Phys. Lett. 58, 13871389 (1991).Google Scholar
19. Nishimura, K., Das, K., Glass, J.T., Kobashi, K. and Nemanich, R.J., (1989).Google Scholar
20. Gildenblat, G., Grot, S. and Badzian, A., Proc. of IEEE 79, 647668 (1991).Google Scholar
21. Harper, R., Johnston, C., Blamires, N., Chalker, P. and Buckleygolder, I., Surf, and Coating Tech. 47, 344355 (1991).Google Scholar
22. Werner, M., Schlichting, V. and Obermeier, E., Dia. and Rel. Mat. 1, 669672 (1992).Google Scholar
23. Edwards, L.M. and Davidson, J.L., Dia. and Rel. Mat. 2, 808811 (1993).Google Scholar
24. Malta, D.M., von Windheim, J.A. and Fox, B.A., Appl. Phys. Lett, submitted, (1993).Google Scholar
25. Kawarada, H., Mar, K.S. and Hiraki, A., Jap. J. Appl. Phys. 26, L1032 L1034 (1987).Google Scholar
26. Liou, Y., Inspektor, A., Weimer, R. and Messier, R., Appl. Phys, Lett. 55, 631633 (1989).Google Scholar
27. Kamo, M., Yurimoto, H. and Sato, Y., Appl. Surf. Sci. 33/34, 553560 (1988).Google Scholar
28. Prins, J.F., Thin Solid Films 212, 1118 (1991).Google Scholar
29. Okano, K., Naruki, H., Akiba, Y., Kurosu, T., Iida, M., Hirose, Y. and Nakamura, T., Jpn J. Appl. Phys. 28, 10661071 (1989).Google Scholar
30. Fujimori, N., The Centennial memorial Issue of The Ceramic Society of Japan 99, 10631068 (1991).Google Scholar
31. Fujimori, N., Imai, T. and Doi, A., Vacuum 36, 99102 (1986).Google Scholar
32. Tessmer, A.J., Das, K. and Dreifus, D., Dia. and Rel. Mat. 8992 (1992).Google Scholar
33. Tessmer, A.J., Piano, L.S. and Dreifus, D.L., IEEE Elec. Dev. Leu. 14, 6668 (1993).Google Scholar
34. Stoner, B.R., Malta, D.M., Tessmer, A.J., Holmes, J.S., Dreifus, D.L., Glass, R.C., Sowers, A. and Nemanich, R.J., SPIE. San Diego, CA SPIE (1994)Google Scholar
35. Field, J.E., in The Properties of Diamond 1- Eds. (Academic Press; Harcourt Brace Jovanovich, Publishers, New York, 1979), pp. 674.Google Scholar
36. Kern, W. and Puotinen, D.A., RCA Review 31, 187 (1970).Google Scholar
37. Tessmer, A.J. and Dreifus, D.L., to be publishedGoogle Scholar
38. Aslam, M., Taher, I., Masood, A., Tamor, M.A. and Potter, T.J., Appl. Phys. Lett. 60, 29232925 (1992).Google Scholar
39. Gildenblat, G.S., Grot, S.A., Hatfield, C.W., Wronski, C.R., Badzian, A.R., Badzian, T. and Messier, R., MRS (1989).Google Scholar
40. Zeidler, J.R., Hewett, C.A. and Wilson, R.G., Phys. Rev. B 47, 20652071 (1993).Google Scholar
41. Piano, L.S., Malta, D.M., von Windheim, J.A., Kao, C.-t. and Fox, B.A., to be published (1994).Google Scholar
42. Miyata, K., D.D.L., , Das, K.D., Glass, J.T. and Kobashi, K., The Second International Symposium on Diamond Materials. Washington DC The Electrochemical Society (1991) 543550.Google Scholar
43. Miyata, K., Matsui, Y., Kumagai, K., Miyauchi, S. and Kobashi, K., New Diamond Science and Technology. Washington DC Materials Research Society (1991) 981986.Google Scholar
44. Miyata, K., Dreifus, D. and Kobashi, K., Appl. Phys. Lett. 60, 480482 (1992).Google Scholar
45. Mori, Y., Eimori, N., Ma, J., Ito, T. and Hiraki, A., Appl. Surf. Sci. 56–58, 8993 (1992).Google Scholar
46. Mort, J., Machonkin, M.A. and Okumura, K., Appl. Phys. Lett. 59, 455457 (1991).Google Scholar
47. Davis, R.F., Kelner, G., Shur, M., Palmour, J.W. and Edmond, J.A., Proc. of the IEEE 79, 677701 (1991).Google Scholar
48. Holmes, J.S., Tessmer, A.J. and Dreifus, D.L., The Second International High Temperature Electronics Conference. Charolette, North Carolina to be published (1994)Google Scholar