Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T01:11:13.186Z Has data issue: false hasContentIssue false

Development of ZnO/Ta2O5 heterojunction using low-temperature technological processes

Published online by Cambridge University Press:  22 September 2011

R. Baca
Affiliation:
CINVESTAV IPN, Av. Instituto Politécnico Nacional No. 2508, D.F., C.P. 7360, México.
J. A. Andraca
Affiliation:
CINVESTAV IPN, Av. Instituto Politécnico Nacional No. 2508, D.F., C.P. 7360, México.
M. G. Arellano
Affiliation:
CINVESTAV IPN, Av. Instituto Politécnico Nacional No. 2508, D.F., C.P. 7360, México.
G. R. Paredes
Affiliation:
CINVESTAV IPN, Av. Instituto Politécnico Nacional No. 2508, D.F., C.P. 7360, México.
R. P. Sierra
Affiliation:
CINVESTAV IPN, Av. Instituto Politécnico Nacional No. 2508, D.F., C.P. 7360, México.
Get access

Abstract

ZnO/Ta2O5 heterojunctions were formed on glass substrates using low temperature processes. Formerly insulating Ta2O5 films were deposited on glass substrates by vacuum evaporation using Ta2O5 powder, Afterwards transparent and conductive ZnO films were formed on the Ta2O5 films by thermal oxidation at 3200C in air atmosphere of zinc (Zn) films deposited by dc sputtering process. Structural and optical properties of ZnO were investigated by X-ray diffraction (XRD) and photoluminescence (PL). The Ta2O5 insulating films were characterized by Raman scattering. The ZnO/Ta2O5 heterojunction was characterized by current-voltage measurements at room temperature as well as transient response under a rectangular-pulse voltage source. The electrical and the transient response suggest that the ZnO/Ta2O5 heterojunction is a potential alternative for the fabrication of alternating-current-driven thin film electroluminescent (ACTFEL) devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sohn, S., Hamakawa, H, Y., Journal Applied Physics, 72(6), 24922504, 1992.Google Scholar
2. Yu, Y. S., Kim, G. Y., Min, B. H., Kim, S. C., Journal of the European Ceramic Society, 24, 18651868, 2004.Google Scholar
3. Zhao, J., Hu, L., Wang, Z., Zhao, Y., Liang, X., Wang, M., Applied Surface Science, 229, 311315, 2004.Google Scholar
4. Lima, S., Cremona, M., Davalos, M. R., Legnani, C., Quirino, W. G., Thin Solid Films, 516, 165169, 2007.Google Scholar
5. Nandi, S. K., Chatterjee, S., Samanta, S. K., Dalapati, G. K., Bose, P. K., Varma, S., Maiti, C. K., Bull. Matter, Sci, 26(4), Indian Academy Science, 365369, 2003.Google Scholar
6. Ezhilvalavan, S., Tseng, T. Y., Journal of Materials Science: Materials in Electronics, 10, 931, 1999.Google Scholar
7. Rusu, G. G., Rusu, M., Apetroaei, N., Thin Solid Films, 515, 86998704, 2007.Google Scholar
8. McMordie, H, Morris, M, Evans, E, Paretzkin, B, Wong-Ng, W, Ettlinger, L, Hubbard, C, Powder Difraction, 1, (1986) 76.Google Scholar
9. Yuen, C., Yu, S. F., Lau Rusli, S. P., Chen, T. P., Applied Physics Letters, 86, 2005.Google Scholar
10. Dobal, P. S., Katiyar, R. S., Jiang, Y., Guo, R., Bhalla, A. S., Journal of Raman Spectroscopy, 31, 1061, (2000)Google Scholar
11. Huang, A. P., Chu, Paul K., Journal of Crystal Growth, 274(73), 2005.Google Scholar
12. Bringuier, E., Philosophical Magazine B, 75(2), 209228, 1997.Google Scholar
13. Buchanan, D. A., Fischetti, M. V., DiMaria, D.J., Physical Review B, 43(2), 14711486, 1991.Google Scholar
14. Ono, Y. A., Kawakami, H., Fuyama, M., Japanese Journal of Applied Physics, 26(9) 14821492, 1987.Google Scholar
15. Martin, P. A., Streetman, B. G., Hess, K., Journal of Applied Physics, 52(12), 74097415, 1981.Google Scholar