Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T16:52:38.018Z Has data issue: false hasContentIssue false

Determination of the Formation of the 1/6[031] Extrinsic Stacking Faults in Deformed YBa2Cu3O7−δ

Published online by Cambridge University Press:  21 February 2011

M. J. Kramer
Affiliation:
Ames Laboratory, Iowa State University, Ames, IA 50011
E. P. Kvam
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
L. S. Chumbley
Affiliation:
Ames Laboratory, Iowa State University, Ames, IA 50011
Get access

Abstract

Mechanial deformation of the YBa2Cu3O7−δ high temperature superconductor under a number of different processing conditions resulted in the formation of <100> and <110> edge dislocations, both having a (001) slip plane. Subsequent high temperature annealing at 900°C resulted in the formation of extrinsic stacking faults with a large separation of the partial dislocations, up to 0.35 μm, suggesting a very low minimum stacking fault energy of 1.2 × 10−2 J/m2. High resolution transmission electron microscopy (HRTEM) in conjunction with image simulations revealed that the stacking faults were comprised of an extra CuO plane between the Ba layers with an offset of b/2. The stacking fault vector of 1/6[031] requires some separation of the <010> Burgers vectors into the c-axis direction. A model in which [010] separates into 1/6[031] + 1/[031] is consistent with the observed stacking faults.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kramer, M.J., Chumbley, L.S., McCallum, R.W., J. Mat. Sci., in press.Google Scholar
2. Nellis, W.J., Seaman, C.L., Maple, M.B., Early, E.A., Holt, J.B., Kamegai, M., Smith, G.S., Hinks, D.G., and Dabrowski, D., in High Temperature Superconducting Compounds: Processing and Related Properties, edited by Whang, S.H. and DasGupta, A., (TMS Publications, Warrendale, PA, 1989) pp. 249.Google Scholar
3. Kramer, M.J., Chumbley, L.S., McCallum, R.W., Nellis, W.J. and Weir, S., and Kvam, E.P., Physica C, 166 115 (1990).Google Scholar
4. Ikeda, S., Hatano, T., Matsushita, A., Matsumoto, T., and Ogawa, K., Jap. J. App. Phys. 26 L729 (1987).Google Scholar
5. Matsui, Y., Takayama-Muromachi, E., and Kato, K., Jap. J. App. Phys. 27 L350 (1988).Google Scholar
6. Nakahara, S., Jin, S., Sherwood, R.C., and Tiefel, T.H., Appl. Phys. Lett. 54 1926 (1989).10.1063/1.101498Google Scholar
7. Dimos, D., Chaudhari, P., Mannhart, J., and LeGoures, F.K., Phys. Rev. Lett. 61 219 (1988).Google Scholar
8. Ledbetter, H.M., Austin, M.W., Kim, S.A., and Lei, M., J. Mat. Res 2 786 (1987).Google Scholar
9. Chumbley, L.S., Kramer, M.J., Kim, M.R., and Laabs, F.C., Mat. Sci. Eng. Lett. in press.Google Scholar
10. Zandbergen, H.W., Gronsky, R., and Thomas, G., Phys. Stat. Sol. (a) 105 207 (1988).Google Scholar
11. Ramesh, R., Hwang, D.M., Venkatesan, T., Ravi, T.S., Nazar, L., Inam, A., Wu, X.D., Dutta, B., Thomas, G., Marshall, A.F., Geballe, T.H., Science 247 57 (1990).Google Scholar
12. Marsh, P., Fleming, R.M., Mandich, M.L., DeSantolo, A.M., Kwo, J., Hong, M., and Martinez-Miranda, L.J., Nature 334 141 (1988).10.1038/334141a0Google Scholar
13. Ourmazd, A.., Spence, J.C.H., Zuo, J.M., and Li, C.H.. J, Elec. Micro 8 251 (1988).Google Scholar
14. Jin, S., O'Brian, H.M., Gallagher, P.K., Tiefel, T.H., Cava, R.J., Fastnacht, R.A., and Kammlott, G.W., Physica C, in press.Google Scholar
15. Morris, D.E., Nickel, J.H., Wei, J.Y.T., Asmar, N.G., Scott, J.S., Scheven, U.M., Hultgren, C.T., Markelz, A.G., Post, J.E., Heaney, P.J., Veblen, D.R., and Hazen, R.M., Phys. Rev. B 39 7347 (1989).10.1103/PhysRevB.39.7347Google Scholar