Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:26:19.396Z Has data issue: false hasContentIssue false

Dependence of Crystallographic Texture of C54 Tisi2 on Thickness and Linewidth In Submicron Cmos Structures

Published online by Cambridge University Press:  15 February 2011

V. Svilan
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
K. P. Rodbell
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
L. A. Clevenger
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
C. Cabral Jr
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
R. A. Roy
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
C. Lavoie
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
J. Jordan-Sweet
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
J. M. E. Harper
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

Preferential crystal orientation of low-resistance C54 TiSi2 formed in the reaction of polycrystalline and single crystal silicon with titanium was investigated for Ti thicknesses ranging from 15 to 44 nm. Using in situ synchrotron x-ray diffraction during heating of 15 nm of Ti on single crystal Si, we observed that the C54 TiSi2 silicide film showed predominantly <040> grains oriented normal to the sample. In thicker silicide films the <311> orientation dominated or film was randomly oriented. An ex situ four circle diffractometer was used to investigate the strong <040> texture in narrow line arrays of C54-TiSi2 formed on polycrystalline silicon with linewidths from 0.2 to 1.1 μm. We observed that the angular distribution of <040> Ti Si2 grains is dependent on the line direction, where the majority of grains had their (100) planes oriented parallel with the line direction. These findings support a model of the C49 to C54 TiSi2 transformation involving rapid growth of certain orientations favored by the one-dimensional geometry imposed by narrow lines.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Clevenger, L.A., Roy, R. A., Cabral, C. Jr., Saenger, K. L., Brauer, S., Morales, G., Ludwig, K. F. Jr, Gifford, G., Bucchignano, J., Jordan-Sweet, J., DeHaven, P. and Stephenson, G. B., J. Mater Res., 10, 2355 (1995).Google Scholar
2. Mann, R. W., Racine, C. A. and Bass, R. S., Mat. Res. Soc. Symp. Proc., 224, 115 (1991).Google Scholar
3. Clevenger, L.A., Cabral, C. Jr., Roy, R.A., Lavoie, C., Viswanathan, R., Saenger, K.L., Jordan-Sweet, J., Morales, G., Ludwig, K. F. Jr. and Stephenson, G. B., MRS Fall 1995, Symposium H.Google Scholar
4. Ma, Z. and Allen, L. H., Phy. Rev. B, 49, 13501 (1994).Google Scholar
5. Jeon, H., Sukow, C. A., Honeycutt, J. W., Rozgonyi, G. A. and Nemanich, R. J., J Appl. Phys., 71, 4269 (1992).Google Scholar
6. Ma, Z., Allen, L. H. and Allman, D. D. J., J. Appl. Phys., 77, 4384 (1995).Google Scholar
7. Roy, R. A., Clevenger, L. A., Cabral, C. Jr., Saenger, K. L., Brauer, S., Jordan-Sweet, J., Bucchignano, J., Stephenson, G. B., Morales, G. and Ludwig, K. F. Jr., Appl. Phys. Lett., 66, 1732 (1995).Google Scholar
8. Schulz, L. G., J. Appl. Phys., 20, 1030 (1949).Google Scholar
9. Clevenger, L. A., Cabral, C. Jr., Roy, R. A., Lavoie, C., Jordan-Sweet, J., Morales, G., Ludwig, K.F. Jr. and Stephenson, G. B., submitted to Thin Solid Films.Google Scholar
10. Jeon, H., Sukow, C. A., Honeycutt, J. W., Rozgonyi, G. A. and Nemanich, R. J., J. Appl. Phys., 71, 4269 (1992).Google Scholar
11. Raaijmakers, I. J., Fundamental Aspects of Reactions in Titanium-Silicon Thin Films for Intergrated Circuits, Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven (1988).Google Scholar
12. Ma, Z., Ramanath, G. and Allen, L. H., Mat. Res. Soc. Symp. Proc., 320, 361 (1994).Google Scholar
13. Pico, C. A. and Lagally, M. G., J. Appl. Phys., 64, 4957 (1988).Google Scholar
14. EMS on Line, World Wide Web, http://cimewww.epfl.chGoogle Scholar