Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:22:51.245Z Has data issue: false hasContentIssue false

Defects and Diffusion in Silicon: An Overview

Published online by Cambridge University Press:  10 February 2011

N.E.B. Cowern
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
G. Mannino
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
P.A. Stolk
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
M.J.J. Theunissen
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
Get access

Abstract

At the current pace of semiconductor technology development, transistor dimensions in advanced IC products will approach the range of a few tens of nanometers within the next decade. This presents a major challenge for our understanding of defects and diffusion in these tiny devices during processing. In response, an almost explosive growth in research on process physics has taken place at universities, national institutes and industry research labs worldwide. The central issue is the phenomenon of nonequilibrium diffusion driven by processing steps such as oxide growth, high concentration gradients of impurities, and annealing of damage caused by ion implantation. Nonequilibrium diffusion arises from perturbations to the natural thermal equilibrium concentrations of point defects - interstitial atoms and vacancies - in the silicon crystal. This paper gives a snapshot of our current understanding of the atomic-scale interactions between point defects and impurity atoms, extended defects and interfaces, as revealed by recent experimental and theoretical studies. The paper emphasizes the important role played by defect cluster ripening during transient enhanced diffusion and dopant activation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Fahey, P.M., Griffin, P.B., and Plummer, J.D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
[2] Hu, S.M., Materials Science and Engineering R 13, 105 (1994).Google Scholar
[3] Ural, A., Griffin, P.B., and Plummer, J.D., J. Apl. Phys. 85, 6440 (1999).Google Scholar
[4] Bracht, H., Hailer, E.E., and Clark-Phelps, R., Phys. Rev. Lett. 81, 393 (1998).Google Scholar
[5] Recent ab initio calculations suggest that for the important case of B diffusion, the migrating species is the B-I pair (Sadigh, B., Lenosky, T.J., Theiss, S.K., Caturla, M.-J., Rubia, T. Diaz de la, and Foad, M.A.; unpublished).Google Scholar
[6] Cowern, N.E.B., Janssen, K.T.F., Walle, G.F.A. van de, and Gravesteijn, D.J., Phys. Rev. Lett. 65, 2434 (1990).Google Scholar
[7] Cowem, N.E.B., Walle, G.F.A. van de, Gravesteijn, D.J., and Vriezema, C.J., Phys. Rev. Lett. 67, 212 (1991).Google Scholar
[8] Cowern, N.E.B., Mannino, G., Stolk, P.A., Roozeboom, F., Huizing, H.G.A., Berkum, J.G.M. van, Cristiano, F., Claverie, A., and Jaraiz, M., Phys. Rev. Lett. 82, 4460 (1999).Google Scholar
[9] Fair, R.B., in Impurity Doping Processes in Silicon, edited by Wang, F.F.Y. (North-Holland, Amsterdam, 1991), page 315.Google Scholar
[10] Bracht, H., Stolwijk, N.A., and Mehrer, H., Phys. Rev. B 52, 16542 (1995).Google Scholar
[11] Bork, I. and Schwerin, A. v., Mat. Res. Soc. Symp. Proc. 532, 29 (1998).Google Scholar
[12] Larsen, A. Nylandsted, Larsen, K. Kyllesbech, Andersen, P.E., and Svensson, B.G., J. Appl. Phys. 73, 691 (1993).Google Scholar
[13] Scholtz, R., Gésele, U., Huh, J.Y, and Tan, T.Y, Appl. Phys. Lett. 72, 200 (1998).Google Scholar
[14] Agarwal, A., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Haynes, T.E., Jackson, J., Erokhin, Yu.E., and Poate, J.M., Proc. 4th Int. Workshop on Measurement, Characterization and Modeling of Ultra-Shallow Doping Profiles in Semiconductors (Research Triangle Park, North Carolina, 1997).Google Scholar
[15] Agarwal, A., Gossmann, H.-J., Eaglesham, D.J., Hemer, S.B., Fiory, A.T., and Haynes, T.E., Appl. Phys. Lett. 74, 2435 (1999); A. Agarwal, H.-J. Gossmann, and D.J. Eaglesham, Appl. Phys. Lett. 74, 2331 (1999).Google Scholar
[16] Dunham, S.T., Chakravathi, S., and Gencer, A.H., Proc. International Electron Devices Meeting (San Francisco, CA, 6–9 Dec., 1998).Google Scholar
[17] Cowem, N.E.B., Theunissen, M.J.J., Roozeboom, F., and Berkum, J.G.M. van, Appl. Phys. Lett. (in press).Google Scholar
[18] TSUPREM4 User Manual (Avant! TCAD Business Unit, CA, 1998).Google Scholar
[19] Stolk, P.A., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraiz, M., Poate, J.M., Luftman, H.S., and Haynes, T.E., J. Appl. Phys. 81, 6031 (1997).Google Scholar
[20] Claverie, A., Assayag, G. Ben, Bonafos, C., Cristiano, F., Colombeau, B., Omri, M., and Mauduit, B. de, submitted to Materials Science in Semiconductor Engineering; A. Claverie, these Proceedings.Google Scholar
[21] Kohyama, M. and Takeda, S., Phys. Rev. B 46, 12305 (1992); ibid., Phys. Rev. B 51, 13111 (1995).Google Scholar
[22] Eaglesham, D.J., Stolk, P.A., Gossmann, H.-J., and Poate, J.M., Appl. Phys. Lett. 65, 2305 (1994).Google Scholar
[23] Cowem, N.E.B., Walle, G.F.A. van de, Zalm, P.C., and Vandenhoudt, D.W.E., Appl. Phys. Lett. 65, 2981 (1994).Google Scholar
[24] Huizing, H.G.A., Visser, C.C.G., Cowern, N.E.B., Stolk, P.A., and Kruif, R.C.M. de, Appl. Phys. Lett. 69, 1211 (1996).Google Scholar
[25] Chao, H.S., Griffin, P.B., Plummer, J.D. and Rafferty, C.S., Appl. Phys. Lett. 69, 2113 (1996).Google Scholar
[26] Li, Jinghong and Jones, K.S., Appl. Phys. Lett. 73, 3748 (1998).Google Scholar
[27] Lee, Y.H., Appl. Phys. Lett. 73, 1119 (1998).Google Scholar
[28] Arai, N., Takeda, S., and Kohyama, M., Phys. Rev. Lett. 78, 4265 (1997).Google Scholar
[29] Benton, J.L., Halliburton, K., Libertino, S., Eaglesham, D.J., and Coffa, S., J. Appl. Phys. 84, 4749 (1998).Google Scholar
[30] Mannino, G., Cowem, N.E.B., Stolk, P.A., Huizing, H.G.A., Roozeboom, F., Berkum, J.G.M. van, Boer, W. de, Claverie, A., Cristiona, F., and Jaraiz, M. (these Proceedings).Google Scholar
[31] Jaraiz, M., Pelaz, L., Rubio, E., Barbolla, J., Gilmer, G.H., Eaglesham, D.J., Gossmann, H.J., and Poate, J.M., Mat. Res. Soc. Symp. Proc. 532, 43 (1998).Google Scholar
[32] Cuendet, N., Halicioglu, T., and Tiller, W.A., Appl. Phys. Lett. 68, 19 (1996).Google Scholar
[33] Magna, A. La, Coffa, S., and Libertino, S., in ‘Silicon Front-End Technology: Materials Processing and Modeling’, MRS Spring Meeting, San Francisco, 1999, paper S5.4.Google Scholar
[34] Pelaz, L., Jaraiz, M., Gilmer, G.H., Gossmann, H.-J., Rafferty, C.S., Eaglesham, D.J., and Poate, J.M., Appl. Phys. Lett. 70, 2285 (1997).Google Scholar
[35] Caturla, M.J., Johnson, M.D., and Rubia, T. Diaz de la, Appl. Phys. Lett. 72, 2736 (1998).Google Scholar
[36] Rousseau, P.M., Griffin, P.B., Fang, W.T., and Plummer, J.D., J. Appl. Phys. 84, 3593 (1998).Google Scholar