Published online by Cambridge University Press: 01 February 2011
Implementation of millisecond annealing requires the identification of the operating conditions for that technique which minimize the residual defects. In addition, possible combinations of low temperature annealing with millisecond annealing could result in minimal residual defects. The samples studied here were implanted with Ge+ pre-amorphization and boron dopant ions and were activated with a scanning laser annealing technique with maximum temperature dwell times of about one millisecond. The laser anneal conditions were varied, along with combinations of spike anneals. The annealed samples were analyzed by plan-view transmission electron microscopy (TEM) to measure the residual defect density and size. The effects of spike temperature, laser annealing temperature, and scan rate will be discussed.