Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:41:41.672Z Has data issue: false hasContentIssue false

CoSi2 formation using a Ti capping layer - The influence of processing conditions on CoSi2 nucleation.

Published online by Cambridge University Press:  21 March 2011

C. Detavernier
Affiliation:
Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, B-9000, Gent, Belgium
R.L. Van Meirhaeghe
Affiliation:
Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, B-9000, Gent, Belgium
K. Maex
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium. also at E.E. Dept, K.U. Leuven, B-3001 Leuven, Belgium
Get access

Abstract

A reactive Ti capping layer is needed to getter oxygen contamination and to make the cobalt silicidation reaction a more robust process. However, the presence of a Ti capping layer induces two other effects (in addition to the beneficial gettering of oxygen impurities): the formation temperature of CoSi2 is increased and the CoSi2 layer has a strong (220) preferential orientation. Because of the current technological importance of the Ti/Co/Si system, we have made a detailed investigation of the influence of several process parameters (annealing temperature, selective etching, layer thickness) on the nucleation of CoSi2 in the Ti/Co/Si system. Moreover, it is shown that the addition of Ni (i.e. a Ti/Co/Ni/Si or Ti/Ni/Co/Si structure) causes a decrease of the CoSi2 nucleation temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Detavernier, C., Meirhaeghe, R.L. Van, Cardon, F., Donaton, R.A., Maex, K., MicroElectronic Engineering 50(1-4) 125132 (2000).Google Scholar
2. Maex, K., Lauwers, A., Besser, P., Kondoh, E., Potter, M. de, Steegen, A., IEEE Trans. Electr. Dev. 46(7) 15451550 (1999).Google Scholar
3. Besser, P.R., Lauwers, A., Roelandts, N., Maex, K., Blum, W., Alvis, R., Stucchi, M., Potter, M. de, MRS Proc. 560, 375380 (1998).Google Scholar
4. Maex, K., Kondoh, E., Lauwers, A., Potter, M. de, Proost, J., MRS Proc. 560, 239 (1998).Google Scholar
5. Maex, K., Kondoh, E., Lauwers, A., Steegen, A., Potter, M. de, Besser, P., Proost, J., MRS Proc. 403, 297306 (1998).Google Scholar
6. Detavernier, C., Meirhaeghe, R.L. Van, Maex, K., Vandervorst, W., Brijs, B., Cardon, F., Appl. Phys. Lett. 77(20) 31703172 (2000).Google Scholar
7. Kluth, P.C., Detavernier, C., Zhao, Q.T., Xu, J., Bochem, H.P., Lenk, S., Mantl, S., Thin Solid Films 380 (1-2) 201203 (2000).Google Scholar
8. Finstad, T.G., Anfiteatro, D.D., Deline, V.R., d'Heurle, F.M., Gas, P., Moruzzi, V.L., Schwarz, K., Tersoff, J., Thin Solid Films 135 (2) 229243 (1986).Google Scholar
9. Detavernier, C., Meirhaeghe, R.L. Van, Cardon, F., Maex, K., Phys. Rev. B 62(18) 1204512051 (2000).Google Scholar