No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
The use of Conducting Probe Atomic Force Microscopy to give nm scale electronic characterisation of surfaces is reviewed. Local conductance, Kelvin Probe work function measurements, Fowler-Nordheim tunnelling and local C-V characterisation techniques are outlined. The principle results of these and their applications to the semiconductor surface and thin film characterisation are discussed. We present tunnelling data from silicon through varying oxide thickness using conducting AFM and scanning Kelvin Probe measurements from sub micron MOS capacitors. The F-N tunnelling technique has also been used on epitaxial silicon surfaces with atomically flat topography.
The inherent problems associated with quantitative, reproducible measurements are outlined, and the potential applications of the measurements to surface and thin film technology are discussed.