Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T00:19:50.312Z Has data issue: false hasContentIssue false

Conducting AFM: Applications to Semiconductor Surfaces

Published online by Cambridge University Press:  15 February 2011

Martin P. Murrell
Affiliation:
East Coast Scientific Ltd, 14 Bishop's Road, Cambridge, England, CB2 2NH
Sean J. O'Shea
Affiliation:
Department of Engineering, University of Cambridge, Cambridge, UK. CB2 1PZ
Jack Barnes
Affiliation:
Department of Engineering, University of Cambridge, Cambridge, UK. CB2 1PZ
Mark E. Welland
Affiliation:
Department of Engineering, University of Cambridge, Cambridge, UK. CB2 1PZ
Carl J. Sofield
Affiliation:
AEA Technology, Oxford, England OXI I ORA.
Get access

Abstract

The use of Conducting Probe Atomic Force Microscopy to give nm scale electronic characterisation of surfaces is reviewed. Local conductance, Kelvin Probe work function measurements, Fowler-Nordheim tunnelling and local C-V characterisation techniques are outlined. The principle results of these and their applications to the semiconductor surface and thin film characterisation are discussed. We present tunnelling data from silicon through varying oxide thickness using conducting AFM and scanning Kelvin Probe measurements from sub micron MOS capacitors. The F-N tunnelling technique has also been used on epitaxial silicon surfaces with atomically flat topography.

The inherent problems associated with quantitative, reproducible measurements are outlined, and the potential applications of the measurements to surface and thin film technology are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Wong, T.M H. and Welland, M.E., Meas. Sci. Technol. 4 (1993).Google Scholar
2) Sofield, C.J., Murrell, M.P., Sugden, S., Heyns, M., Verhaverbeke, S., Welland, M E., Golan, B. and Barnes, J.. MRS Spring Meeting Proc. 259 3, San Francisco CA, 1992 Google Scholar
3) Verhaverbeke, S., Meuris, M, Heyns, M. M, De Keersmaecker, R.F., Murrell, M.P. and Sofield, C.J., Electrochemical Soc. Proc 92 187 1991 Google Scholar
4) Fukano, Y., Sugawara, Y., Morita, S., Yamanishi, Y. and Oasa, T., Extended abstracts 1992 SSDM Conference, p 117–119, Tsukuba, Japan.Google Scholar
5) O'Shea, S-J., Atta, R-M, Murrell, M P. and Welland, M.E., Submitted to J.Vac. Sci- Tech.Google Scholar
6) Nonnenmacher, N., O'Boyle, M. P. and Wickramasinghe, H. K.. Appl. Phys. Lett. 58 (25) 1991.Google Scholar
7) Maria, D.J. Di, Extended abstracts 1993 SSDM Conference,, Makuhari, Japan.Google Scholar
8) Yasutake, M., Ejiri, Y. and Hattori, T., Jpn. J, Appl. Phys. Let. 32 (7B).Google Scholar
9) Murrell, M.P., Welland, M.E., O'Shea, S. J., Wong, T.M H., Barnes, J R., McKinnon, A.W., Heynes, M. and Verhaverbeke, S., Appl. Phys. Lett. 62 (7) 1993.Google Scholar
10) Lanyi, S., Torok, J. and Rehurek, P., Rev. Sci. Instrum. 65 (7) 1994 Google Scholar
11) Huang, Y., Williams, C.C. and Slinkman, J.. Appl. Phys. Lett. 66 (3) 1995 Google Scholar
12) Huang, Y., Williams, C.C., J. Vac. Sci. Technol. B 12 (1) 1994 Google Scholar
13) Baike, Ian D. PhD. Thesis, University of Twente 1988.Google Scholar
14) Terrs, B.D., Stern, J.E., Rugar, D. and Mamin, H.J., J. Vac. Sci. Technol. A 8 (1) 1990 Google Scholar
15) Terrs, B.D., Stem, J E., Rugar, D. and Mamin, H.J., Phy. Rev. Lett. 63 (24) 1989.Google Scholar
16) Stern, J.E., Terrs, B.D., Mamin, H.J. and Rugar, D., Appl. Phys. Lett. 53 (26) 1988 Google Scholar
17) Schonenberger, C. and Alvarado, S.F. Phy. Rev. Lett. 65 (25) 1990.Google Scholar
18) Martin, Y., Abraham, D.W. and Wickramasinghe, H.K., Appl. Phys. Lett. 52 (13) 1988 Google Scholar
19) Henning, A.K., Hochwitz, T., Slinkman, J., Never, J., Hoffmnann, S., Kaszuba, P. and Daghlian, C., J. Appl. Phys. 77 (5) 1995.Google Scholar