Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T16:40:01.605Z Has data issue: false hasContentIssue false

Comparison of Growth and Strain Relaxation of Si/Ge Superlattices Under Compressive and Tensile Strain Field

Published online by Cambridge University Press:  22 February 2011

Werner Wegscheider
Affiliation:
Walter Schottky Institut, Technische Universität Munchen, Am Coulombwall, D-8046 Garching, Federal Republic of Germany
Karl Eberl
Affiliation:
Walter Schottky Institut, Technische Universität Munchen, Am Coulombwall, D-8046 Garching, Federal Republic of Germany
Gerhard Abstreiter
Affiliation:
Walter Schottky Institut, Technische Universität Munchen, Am Coulombwall, D-8046 Garching, Federal Republic of Germany
Hans Cerva
Affiliation:
Siemens AG, Research Laboratories, Otto Hahn Ring 6, D-8000 MUnchen 83, Federal Republic of Germany
Helmut Oppolzer
Affiliation:
Siemens AG, Research Laboratories, Otto Hahn Ring 6, D-8000 MUnchen 83, Federal Republic of Germany
Get access

Abstract

Optimization of growth parameters of short period Si/Ge superlattices (SLs) has been achieved via in situ low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES) measurements during homo- and heteroepitaxy on Si (001) and Ge (001) substrates. Transmission electron microscopy (TEM) reveals that pseudomorphic SimGe12-m (m = 9 and 3 for growth on Si and Ge, respectively) SLs with extended planar layering can be prepared almost defect-free by a modified molecular beam epitaxy (MBE) technique. Whereas the SLs on Ge can be deposited at a constant substrate temperature, high-quality growth on Si demands for temperature variations of more than 100°C within one superlattice period. Strain relaxation of these SLs with increasing number of periods has been directly compared by means of TEM. For the compressively strained structures grown on Si we found misfit dislocations of the type 60° (a/2)<110>. Under opposite strain conditions i.e. for growth on Ge, strain relief occurs only by microtwin formation through successive glide of 90° (a/6)<211> Shockley partial dislocations. This is consistent with a calculation of the activation energy for both cases based on a homogeneous dislocation nucleation model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abstreiter, G., Eberl, K., Friess, E., Wegscheider, W. and Zachai, R., J. Cryst. Growth 95, 431 (1989).Google Scholar
2. Froyen, S., Wood, D. M., and Zunger, A., Phys. Rev. B 36, 4547 (1987).Google Scholar
3. See, for example Hull, R., Bean, J. C., Bonar, J. M. and Peticolas, L. in Epitaxial Heterostructures, edited by Shaw, D. W., Bean, J. C., Keramidas, V. G., and Peercy, P. S. (Mater. Res. Soc. Proc. 198, Pittsburgh, PA 1990) pp. 459471 and references contained therein.Google Scholar
4. Van de Leur, R. H. M., Schellingerhout, A. J. G., Tuinstra, F., and Mooij, J. E., J. Appl. Phys. 64, 3043 (1988).Google Scholar
5. Eberl, K., Wegscheider, W., Friess, E., and Abstreiter, G., in Nato ASI Series Vol. 160: Heterostructures on Silicon: One Step further with Silicon, edited by Nissim, Y., Rosencher, E. (Kluwer, Dordrecht, 1989), pp. 153160.Google Scholar
6. Henzler, M., in Electron Spectroscopy for Surface Analysis, edited by Ibach, H., Topics in Current Physics, Vol. 4 (Springer, Berlin, 1977), pp. 117150.Google Scholar
7. Iyer, S. S., Tsang, J. C., Copel, M. W., Pukite, P. R., and Tromp, R. M., Appl. Phys. Lett. 54, 329 (1989).Google Scholar
8. Wegscheider, W., Eberl, K., Abstreiter, G., Cerva, H. and Oppolzer, H., Appl. Phys. Lett. 57, 1496 (1990).CrossRefGoogle Scholar
9. Matthews, J. W., J. Vac. Sci. Technol. 12, 126 (1975).Google Scholar
10. Marée, P. M. J., Barbour, J. C., Van der Veen, J. F., Kavanagh, K. L., Bulle-Lieuwma, C. W. T., and Viegers, M. P. A., J. Appl. Phys. 62, 4413 (1987).Google Scholar