Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:39:21.860Z Has data issue: false hasContentIssue false

Comparative Studies of Gate Oxides Using Thermal, Stacked Gate, and Rapid Thermal Oxidation

Published online by Cambridge University Press:  21 February 2011

S. Chittipeddi
Affiliation:
AT&T Bell Laboratories, 555 Union Boulevard, Allentown, PA 18103
P. K. Roy
Affiliation:
AT&T Bell Laboratories, 555 Union Boulevard, Allentown, PA 18103
V. C. Kannan
Affiliation:
AT&T Bell Laboratories, 555 Union Boulevard, Allentown, PA 18103
R. Singh
Affiliation:
AT&T Bell Laboratories, 555 Union Boulevard, Allentown, PA 18103
C. M. Dziuba
Affiliation:
AT&T Bell Laboratories, 555 Union Boulevard, Allentown, PA 18103
Get access

Abstract

In this paper we report on the quality of gate oxides obtained using three different oxidation techniques, namely thermal oxidation, rapid thermal oxidation and stacked gate oxidation. We report on the oxide thicknesses, the flatband voltage, threshold voltage, and QSS/Q values for MOS capacitors fabricated using these three techniques. We also fabricated MOSFET's using thermal oxides and stacked gate oxides, and find that the stacked gate oxides have a lower gate oxide defect density. Lattice images have also been obtained for the Si/SiO2 interface using transmission electron microscopy (TEM). We find that stacked oxide synthesis results in lower stresses and asperities at the interface relative to thermal and rapid thermal oxidation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Roy, P.K., and Sinha, A.K., AT&T Technical Journal, 67, No. 6, 173 (1988)Google Scholar
2. Watanabe, T., Proc. Of Int. Rel. Phys. Symp. p 18 (1985).Google Scholar
3. Fiegel, F.L., VLSI Electronics, Microstructure Science, 6, p. 147 (1983).Google Scholar
4. Hori, T.K., Iwaskai, H., and Tsuji, K., IEEE Trans. Elec. Devices, 35, 904 (1988)10.1109/16.3343Google Scholar
5. Kaga, T., Hagiwara, T., IEEE Trans. Elec. Devices, 35, 929 (1988)Google Scholar
6. Momose, H.S., Kitagawa, S., Yamabe, K., Iwai, H., Proc. of IEDM, 267 (1989).Google Scholar
7. Suzuki, E., Hayashi, Y., IEEE Trans. on Elec. Devices, ED–33, 214 (1986)10.1109/T-ED.1986.22468Google Scholar
8. Mehta, S. and Hodul, D., Mat. Res. Soc. Symp. Proc., 92 (1987).Google Scholar
9. Gat, A. and Nulman, J., Semiconductor International (1985).Google Scholar
10. Roy, P.K. et al. , U.S. Patent No. 4851370 (25 July 1989).Google Scholar
11. Roy, P. K. and Kannan, V. C., Proc. of Mat. Res. Soc. Symp., 138, 360 (1989)Google Scholar