Published online by Cambridge University Press: 07 January 2013
A high temperature ceramic selective emitter for thermophotovoltaic (TPV) electric generators is described with a spectral match to GaSb IR cells. While solar cells generate electricity quietly and are lightweight, traditional solar cells are used with sunlight and only generate electricity during the day. Workers at JX Crystals invented the GaSb IR cell as a booster cell to demonstrate a solar cell conversion efficiency of 35%. JX Crystals now makes these IR cells. In TPV, these cells can potentially be used with flame heated ceramic emitters to generate electricity quietly day and night. One of the most important requirements for TPV is a good spectral match between the ceramic IR emitted and the IR PV cells. The first problem is to find, demonstrate, and integrate a doped ceramic IR emitter with a spectral match to these GaSb cells. Recently, nickel oxide and cobalt oxide doped MgO-based ceramics have been shown experimentally and theoretically to have spectral selectivity but no attempts have been made to integrate these ceramic IR emitters into a fully operational TPV generator. Herein, we review the history of TPV and note that a key to future progress will be the integration of an appropriate ceramic emitter with cells and a burner to demonstrate an operational TPV generator. Integrating TPV into a residential boiler is discussed as a potential future large volume commercial market.