Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T16:52:04.568Z Has data issue: false hasContentIssue false

Basic Study on High-density Ferroelectric Data Storage Using Scanning Nonlinear Dielectric Microscopy

Published online by Cambridge University Press:  11 February 2011

Yoshiomi Hiranaga
Affiliation:
Research Institute of Electrical Communication, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, 980–8577, Japan
Kenjiro Fujimoto
Affiliation:
Research Institute of Electrical Communication, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, 980–8577, Japan
Yasuo Wagatsuma
Affiliation:
Research Institute of Electrical Communication, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, 980–8577, Japan
Yasuo Cho
Affiliation:
Research Institute of Electrical Communication, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, 980–8577, Japan
Atsushi Onoe
Affiliation:
Pioneer Corporation, 6–1–1 Fujimi, Tsurugashima, Saitama, 350–2288, Japan
Kazuya Terabe
Affiliation:
Nanomaterials Laboratory, National Institute for Materials Science, 1–1 Namiki, Tsukuba, 305–0044, Japan
Kenji Kitamura
Affiliation:
Nanomaterials Laboratory, National Institute for Materials Science, 1–1 Namiki, Tsukuba, 305–0044, Japan
Get access

Abstract

Scanning Nonlinear Dielectric Microscopy (SNDM) is the method for observing ferroelectric polarization distribution, and now, its resolution has become to the sub-nanometer order, which is much higher than other scanning probe microscopy (SPM) methods for the same purpose. Up to now, we have studied high-density ferroelectric data storage using this microscopy. In this study, we have conducted fundamental experiments of nano-sized inverted domain formation in LiTaO3 single, and successfully formed inverted dot array with the density of 1.5 Tbit/inch2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jona, F. and Shirane, G., Ferroelectric crystals, (Pergamon Press, 1962), p.46.Google Scholar
2. Pauch, P., Tybell, T. and Triscone, J.-M., Appl. Phys. Lett. 79, 530 (2001).Google Scholar
3. Cho, Y., Kazuta, S. and Matsuura, K., Appl. Phys. Lett. 75 2833 (1999).Google Scholar
4. Odagawa, H. and Cho, Y., Jpn. J. Appl. Phys. 39 5719 (2000).Google Scholar
5. Cho, Y., Kazuta, S., Matsuura, K. and Odagawa, H., J. Europ. Ceram. Soc. 21, 2131 (2001).Google Scholar
6. Matsuura, K., Cho, Y. and Odagawa, H., Jpn. J. Appl. Phys. 40, 3534 (2001).Google Scholar
7. Eng, L. M., Bammerlin, M., Loppacher, CH., Guggisberg, M., Bennewitz, R., Lüthi, R., Meyer, E., Huser, TH., Heinzelmann, H. and Güntherodt, H.-J., Ferroelectrics, 222, 153 (1999).Google Scholar
8. Furukawa, Y., Kitamura, K., Suzuki, E. and Niwa, K., J. Cryst. Growth, 197, 889 (1999).Google Scholar
9. Kitamura, K., Furukawa, Y., Niwa, K., Gopalan, V. and Mitchell, T. E., Appl. Phys. Lett., 73, 3073 (1998).Google Scholar
10. Gopalan, V., Mitchell, T. E. and Sicakfus, K. E., Solid State Communication, 109, 111 (1999).Google Scholar
11. Kim, S., Gopalan, V., Kitamura, K. and Furukawa, Y., J. Appl. Phys., 90, 2949(2001).Google Scholar