Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T13:50:30.329Z Has data issue: false hasContentIssue false

Atomically Controlled Impurity Doping in Si-Based CVD Epitaxial Growth

Published online by Cambridge University Press:  17 March 2011

Junichi Murota
Affiliation:
Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Masao Sakuraba
Affiliation:
Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Bernd Tillack
Affiliation:
IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
Get access

Abstract

Atomic-order surface reaction processes on the group IV semiconductor surface are formulated based on the Langmuir-type surface adsorption and reaction scheme. In in-situ doped Si1−xGex epitaxial growth on the (100) surface in a SiH4-GeH4-dopant (PH3, or B2H6 or SiH3CH3)-H2 gas mixture, the deposition rate, the Ge fraction and the dopant concentration are explained quantitatively assuming that the reactant gas adsorption/reaction depends on the surface site materials and that the dopant incorporation in the grown film is determined by Henry's law. Self-limiting formation of 1-3 monolayers of group IV or related atoms in the thermal adsorption and reaction of hydride gases (SiH4, GeH4, NH3, PH3, CH4 and SiH3CH3) on Si(100) and Ge(100) are generalized based on the Langmuir-type model. Epitaxial Si or SiGe grown on N, P or B layers already-formed on Si(100) or SiGe(100) surface is achieved. It is found that higher level of electrical active P atoms exist in such film, compared with doping under thermal equilibrium conditions. Furthermore, the capability of atomically controlled processing for doping of advanced devices with critical requirements for dopant dose and location control is demonstrated for the base doping of SiGe:C heterojunction bipolar transistors (HBTs). These results open the way to atomically controlled technology for ultra-large-scale integrations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meyerson, B. S.. Appl. Phys. Lett. 48, 797 (1986).Google Scholar
2. Murota, J., Nakamura, N., Kato, M., Mikoshiba, N. and Ohmi, T.. Appl. Phys. Lett. 54, 1007 (1989).Google Scholar
3. Murota, J. and Ono, S.. Jpn. J. Appl. Phys. 33, 2290 (1994).Google Scholar
4. Murota, J., Matsuura, T. and Sakuraba, M.. Surf. Interface Anal. 34, 423 (2002).Google Scholar
5. Tillack, B., Heinemann, B., Knoll, D.. Thin Solid Films 369, 189 (2000).Google Scholar
6. Lee, D., Takehiro, S., Sakuraba, M., Murota, J. and Tsuchiya, T.. Appl. Surf. Sci. 224, 254 (2004).Google Scholar
7. Banisch, R., Tillack, B., Pierschel, M., Pressel, K., Barth, R., Kruger, D. and Ritter, G.. MRS Symp. Proc. 450, 213 (1997).Google Scholar
8. Tillack, B., Yamamoto, Y., Knoll, D., Heinemann, B., Schley, P., Senapati, B. and Krüger, D.. Appl. Surf. Sci. 224, 55 (2004).Google Scholar
9. Murota, J., Matuura, T. and Sakuraba, M., in Defect in Silicon/1999, Abe, T., Bullis, W.M., Kobayashi, S., Lin, W. and Wagner, P., Editors, PV 99–1, p. 189, The Electrochemical Society, Pennington, NJ (1999).Google Scholar
10. Lee, D., Noda, T., Shim, H., Sakuraba, M., Matsuura, T., Murota, J.. Jpn. J. Appl. Phys. 40, 2697 (2001).Google Scholar
11. Moriya, A., Sakuraba, M., Matsuura, T. and Murota, J.. Thin Solid Films 343/344, 535 (1999).Google Scholar
12. Noda, T., Lee, D., Shim, H., Sakuraba, M., Matsuura, T. and Murota, J.. Thin Solid Films 380, 57 (2000).Google Scholar
13. Noh, J., Sakuraba, M., Murota, J., Zaima, S. and Yasuda, Y.. Appl. Surf. Sci. 212, 679 (2003).Google Scholar
14. Zaima, S. and Yasuda, Y.. J. Vac. Sci. Technol. B 16, 2623 (1998).Google Scholar
15. Papagno, L., Shen, X.Y., Anderson, J., Spagnolo, G.S. and Lapeyre, G.J.. Phys. Rev. B 34, 7188 (1986).Google Scholar
16. Gupta, P., Colvin, V.L. and George, S.M.. Phys. Rev. B. 37, 8234 (1988).Google Scholar
17. Sakuraba, M., Murota, J. and Ono, S.. J. Appl. Phys. 75, 3701 (1994).Google Scholar
18. Sakuraba, M., Matsuura, T. and Murota, J., in Proc. 5th Int. Symp. Cleaning Technology in Semiconductor Device Manufacturing, Ruzyllo, J. and Novak, R.E., Editors, PV 97–35, p. 213, The Electrochemical Society, Pennington, NJ (1997).Google Scholar
19. Murota, J., Sakuraba, M. and Ono, S.. Appl. Phys. Lett. 62, 2353 (1993).Google Scholar
20. Sakuraba, M., Murota, J., Mikoshiba, N. and Ono, S.. J. Crystal Growth 115, 79 (1991).Google Scholar
21. Watanabe, T., Ichikawa, A., Sakuraba, M., Matsuura, T. and Murota, J.. J. Electrochem. Soc. 145, 4252 (1998).Google Scholar
22. Watanabe, T., Sakuraba, M., Matsuura, T. and Murota, J.. Jpn. J. Appl. Phys. 38, 515 (1999).Google Scholar
23. Sakuraba, M., Murota, J., Watanabe, T., Sawada, Y. and Ono, S.. Appl. Surf. Sci. 82–83, 354 (1994).Google Scholar
24. Murota, J., Sakuraba, M., Watanabe, T., Matsuura, T. and Sawada, Y.. J. Phys. IV France 5, C51101 (1995).Google Scholar
25. Watanabe, T., Sakuraba, M., Matsuura, T. and Murota, J.. Jpn. J. Appl. Phys. 36, 4042 (1997).Google Scholar
26. Izena, A., Sakuraba, M., Matsuura, T. and Murota, J.. J. Crystal Growth 188, 131 (1998).Google Scholar
27. Takatsuka, T., Fujiu, M., Sakuraba, M., Matsuura, T. and Murota, J.. Appl. Surf. Sci. 162–163, 156 (2000).Google Scholar
28. Shimamune, Y., Sakuraba, M., Matsuura, T. and Murota, J.. Appl. Surf. Sci. 162–163, 388 (2000).Google Scholar
29. Tillack, B.. Thin Solid Films 318, 1 (1998).Google Scholar
30. Nomura, M., Sakuraba, M. and Murota, J.. 2nd Int. Workshop on New Group IV (Si-Ge-C) Semiconductors (SiGeC Workshop, Kofu, Japan, June 2-4) (2002), Abs.No.VI-09.Google Scholar
31. Jeong, Y., Sakuraba, M. and Murota, J.. Appl. Phys. Lett. 82, 3472 (2003).Google Scholar
32. Jeong, Y., Sakuraba, M. and Murota, J.. Appl. Surf. Sci. 224, 197 (2004).Google Scholar
33. Shimamune, Y., Sakuraba, M., Matsuura, T. and Murota, J.. Thin Solid Films 380, 134 (2000).Google Scholar
34. Shimamune, Y., Sakuraba, M., Murota, J. and Tillack, B.. Appl. Surf. Sci. 224, 202 (2004).Google Scholar
35. Fair, R.B. and Tsai, J.C.C.. J. Electrochem. Soc. 124, 1107 (1977).Google Scholar
36. Tillack, B., Zaumseil, P., Morgenstern, G., Krüger, D. and Ritter, G.. Appl. Phys. Lett. 67, 1143 (1995).Google Scholar