Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:17:41.679Z Has data issue: false hasContentIssue false

Atomic Bonding at Oxide Surfaces

Published online by Cambridge University Press:  15 February 2011

Victor E. Henrich*
Affiliation:
Department of Applied Physics, Yale University, New Haven, CT 06520
Get access

Abstract

The fundamental interactions involved in the bonding of atoms and molecules to metal oxides are discussed. Surface defects play a major role in many of those interactions. Both acid/base and oxidation/reduction reactions occur at metal-oxide surfaces, with the latter dominating at point defect sites. The reaction of metals with oxide surfaces is governed largely by the relative heats of formation of the respective oxides, although surface point defects also play an important role. Preliminary studies of ceramic/ceramic interfaces indicate that interfacial interactions are much weaker than for metal/ceramic interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Henrich, V.E. and Cox, P.A., The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994).Google Scholar
2. Tjeng, L.H., Vos, A.R. and Sawatzky, G.A., Surf. Sci. 235, 269279 (1990).Google Scholar
3. Li, X., Ph.D. thesis, Yale University, 1994 (unpublished).Google Scholar
4. Onishi, H., Egawa, C., Aruga, T. and Iwasawa, Y., Surf. Sci. 191, 479491 (1987).Google Scholar
5. He, J.W. and Moller, P.J., Surf. Sci. 178, 934942 (1986).Google Scholar
6. Conrad, T., Vohs, J.M., Thiry, P.A. and Caudano, R., Surf. Interface Anal. 16, 446451 (1990).Google Scholar
7. Takayanagi, K., Yaki, K. and Honjo, G., Thin Solid Films 48, 137152 (1978).Google Scholar
8. Vermeersch, M., Sporken, R., Lambin, Ph. and Caudano, R., Surf. Sci. 235, 514 (1990).Google Scholar
9. Arbab, M., Chottiner, G.S. and Hoffman, R.W., Mater. Res. Soc. Symp. Proc. 153, 6369 (1989).Google Scholar
10. Chaug, Y.S., Chou, N.J. and Kim, Y.H., J. Vac. Sci. Technol. A 5, 12881291 (1987).Google Scholar
11. Ohuchi, F.S. and Kohyama, M., J. Amer. Ceram. Soc. 74, 11631187 (1991).Google Scholar
12. Taylor, P.A. and Hopkins, B.J., J.Phys. C: Solid State Phys. 11, L643–L646 (1978).Google Scholar
13. Schmeisser, D. and Jacobi, K., Surf. Sci. 88, 138152 (1979).Google Scholar
14. Didziulis, S.V., Butcher, K.D., Cohen, S.L. and Solomon, E.I., J. Amer. Chem. Soc. 111, 71107123 (1989).Google Scholar
15. Gaebler, W., Jacobi, K. and Ranke, W., Surf. Sci. 75, 355367 (1978).Google Scholar
16. Roberts, S. and Gorte, R.J., J. Chem. Phys. 93, 53375344 (1990).Google Scholar
17. Campbell, C.T., Daube, K.A. and White, J.M., Surf. Sci. 182, 458476 (1987).Google Scholar
18. Zhang, Z. and Henrich, V.E., Surf. Sci. 277, 263272 (1992).Google Scholar
19. Sadeghi, H.R. and Henrich, V.E., J. Catal. 109, 111 (1988).Google Scholar
20. Madey, T.E., Diebold, U. and Pan, J.M., in Adsorption on Ordered Surfaces of Ionic Solids and Thin Films, ed. Freund, H.J. and Umback, E. (Springer, Berlin, 1993), p. 147.Google Scholar
21. Meyer, H.M. III, Hill, D.M., Wagener, T.J., Gao, Y., Weaver, J.H., Capone, D.W. II and Goretta, K.C., Phys. Rev. B 38, 65006512 (1988).Google Scholar
22. Meyer, H.M. III, Weaver, J.H. and Goretta, K.C., J. Appl. Phys. 67, 19952002 (1990).Google Scholar
23. Weschke, E., Laubschat, C., Domke, M., Bodenbach, M., Kaindl, G., Ortega, J.E. and Miranda, R., Z. Phys. B 74, 191195 (1989).Google Scholar
24. Kimachi, Y., Hidaka, Y., Ohno, T.R., Kroll, G.H. and Weaver, J.H., J. Appl. Phys. 69, 31763181 (1991).Google Scholar
25. Ohno, T.R., Patrin, J.C., Meyer, H.M. III, Weaver, J.H., Kimachi, Y. and Hidaka, Y., Phys. Rev. B 41, 1167711680 (1990).Google Scholar
26. Lind, D.M., Berry, S.D., Chem, G., Mathias, H. and Testardi, L.R., Phys. Rev. B 45, 18381850 (1992).Google Scholar
27. Stamper, A., Greve, D.W., Wong, D. and Schlesinger, T.E., Appl. Phys. Lett. 52, 17461748 (1991).Google Scholar
28. Wu, X.D., Muenchausen, R.E., Nogar, N.S., Pique, A., Edwards, R., Wilkens, B., Ravi, T.S., Hwang, D.M. and Chen, C.Y., Appl. Phys. Lett. 58, 304306 (1991).Google Scholar
29. Singh, R.K., Narayan, J., Singh, A.K. and Krishnaswamy, J., Appl. Phys. Lett. 54, 22712273 (1989).Google Scholar
30. Ramesh, R., Inam, A., Hwang, D.M., Ravi, T.S., Sands, T., Xi, X.X., Wu, X.D., Li, Q., Venkatesan, T. and Kilaas, R., J. Mater. Res. 6, 22642271 (1991).Google Scholar
31. Kawai, M., Watanabe, S. and Hanada, T., J. Crystal Growth 112, 745752 (1991).Google Scholar
32. Hill, D.M., Meyer, H.M. III, Weaver, J.H. and Nelson, D.L., Appl. Phys. Lett. 53, 16571659 (1988).Google Scholar
33. Reed, T.B., Free Energy of Formation of Binary Compounds (MIT Press, Cambridge, 1971).Google Scholar