No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
Three approaches to modifying the solid phase crystallization kinetics of amorphous silicon thin films are examined with the goal of reducing the thermal budget and improving the poly-Si quality for thin film transistor applications. The three approaches consist of (1) variations in the PECVD a-Si deposition parameters; (2) the application of pre-fumace-anneal surface treatments; and (3) using both rapid thermal annealing and furnace annealing at different temperatures. We also examine the synergism among these approaches.
Results reveal that (1) film deposition dilution and dilution/temperature changes do not strongly affect crystallization time, but do affect grain size; (2) pre-anneal surface treatments can dramatically reduce the solid phase crystallization thermal budget for diluted films and act synergistically with deposition dilution or dilution/temperature effects; and (3) rapid thermal annealing leads to different crystallization kinetics from that seen for furnace annealing.