Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T06:57:06.488Z Has data issue: false hasContentIssue false

An ab initio two-center tight-binding approach to simulations of complex materials properties

Published online by Cambridge University Press:  10 February 2011

Th. Frauenheim
Affiliation:
Technische Universität, Institut für Physik, D-09107 Chemnitz, Germany
D. Porezag
Affiliation:
Technische Universität, Institut für Physik, D-09107 Chemnitz, Germany
M. Elstner
Affiliation:
Technische Universität, Institut für Physik, D-09107 Chemnitz, Germany
G. Jungnickel
Affiliation:
Technische Universität, Institut für Physik, D-09107 Chemnitz, Germany
J. Elsner
Affiliation:
Technische Universität, Institut für Physik, D-09107 Chemnitz, Germany
M. Haugk
Affiliation:
Technische Universität, Institut für Physik, D-09107 Chemnitz, Germany
A. Sieck
Affiliation:
Technische Universität, Institut für Physik, D-09107 Chemnitz, Germany
G. Seifert
Affiliation:
Technische Universität, Institut für Theoretische Physik, D-01069 Dresden, Germany
Get access

Abstract

We describe the ab initio construction of two-center tight-binding (TB) hamiltonians, which at a properly chosen input density upon non-selfconsistent solution of the related Kohn-Sham equations transform the energy within density-functional theory (DFT) into a tight-bindinglike expression. In cases, where the electron density of the interacting many-atom structure in good approximation may be represented as a sum of atomic-like densities, the method has been shown to operate highly transferable, being particularly successful in determining the properties of low-energy silicon clusters, in predicting the structure and vibrational signatures of fullerene oligomers, amorphous carbons and carbon nitrides and in simulating elementary growth reactions on diamond surfaces. The uncertainties within the standard non-SCF DF-TB-variant, however, increase if the chemical bonding is controlled by a delicate charge balance between different atomic constituents, as e.g. in organic molecules and in polar semiconductors. Therefore, we extend the standard TB-approach to the operation in a selfconsistent-charge mode (SCC-DFTB) in order to improve total energies, forces, and transferability in the presence of considerable long-range Coulomb interactions. By using a variational technique, we derive a transparent and readily calculable expression for the iterative modification of Hamiltonian matrix elements and show, that the final energy is a second order approximation to the total energy in density-functional theory, see M. Elstner et al., this Symposium. First successful applications to surface studies of GaAs and dislocation modeling in GaN will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Harris, J., Phys. Rev. 31 1770 (1985).Google Scholar
2. Foulkes, W., Haydock, R., Phys. Rev. B 39 12520 (1989).Google Scholar
3. Seifert, G., Eschrig, H., Bieger, W., Z. Phys. Chemie (Leipzig) 267 529 (1986).Google Scholar
4. Sutton, A. P., Finnis, M. W., Pettifor, D. G., Ohata, Y., J. Phys. C 21 35 (1988).Google Scholar
5. Sankey, O. F., Niklewski, D. J., Phys. Rev. B 40 3979 (1989).Google Scholar
6. Chadi, D. J., Phys. Rev. Lett. 43 79 (1979).Google Scholar
7. Harrison, W. A., Phys. Rev. B 34 2787 (1986).Google Scholar
8. Andersen, O. K., Jepsen, O., Phys. Rev. Letters 53 2571 (1984).Google Scholar
9. Artacho, E., Yndurain, F., Phys. Rev. B 44 6169 (1991).Google Scholar
10. Cohen, R. E., Mehl, M. J., Papaconstantopoulus, D. A., Phys. Rev. B 50 14694 (1994).Google Scholar
11. Porezag, D., Frauenheim, Th., Köhler, Th., Seifert, G. Phys. Rev. B 51 12947 (1995).Google Scholar
12. Bechstedt, F., Reichardt, D., Enderlein, R., Phys. Stat. Sol. (b) 131 643 (1985).Google Scholar
13. Harrison, W. A., Phys. Rev. B 31 2121 (1985).Google Scholar
14. Majewski, J. A., Vogl, P., Phys. Rev. B 35 9666 (1987).Google Scholar
15. Alerhand, O. L., Mele, E. J., Phys. Rev. B 35 5533 (1987).Google Scholar
16. Skriver, L., Rosengaard, M., Phys. Rev. B 43 9538 (1991).Google Scholar
17. Tsai, M.-H., Sankey, O. F., Dow, J. D., Phys. Rev. B 64 10464 (1992).Google Scholar
18. Demkov, A. A., Ortega, J., Sankey, O. F., Grumbach, M. P., Phys. Rev. B 52 1618 (1995).Google Scholar
19. Kohn, W., Sham, L. J., Phys. Rev. 140A 1133 (1965).Google Scholar
20. Sieck, A., Porezag, D., Frauenheim, Th., Pederson, M.R., Jackson, K., in print, Phys. Rev. A (Dec. 1997).Google Scholar
21. Honea, E.C., Ogura, A., Murray, C.A., Raghavachari, K., Sprenger, W.O., Jarrold, M.F. and Brown, W.L., Nature 366, 42 (1993).Google Scholar
22. Fournier, R., Sinnott, S.B. and DePristo, A.E., J. Chem. Phys. 97, 6, 4149 (1992).Google Scholar
23. Jackson, K., Pederson, M.R., Porezag, D., Hajnal, Z. and Frauenheim, Th., Phys. Rev. B 55, 2549 (1996).Google Scholar
24. Pederson, M.R. und Jackson, K.A., Phys. Rev. B 41, 7453 (1990);Google Scholar
Jackson, K.A. and Pederson, M.R., Phys. Rev. B 42, 3276 (1990);Google Scholar
Pederson, M.R. and Jackson, K.A., Phys. Rev. B 43, 7312 (1991).Google Scholar
25. Ordejon, P., Lebedenko, D. and Menon, M., Phys. Rev. B 50, 5645 (1994).Google Scholar
26. Lee, I., Chang, K.J. and Lee, Y.H., J. Phys.: Cond. Matter 6, 741 (1994).Google Scholar
27. Ramakrishna, M.V. and Bahel, A., J. Chem. Phys. 104, 24, 9833 (1996).Google Scholar
28. Grossman, J.C. and Mitas, L., Phys. Rev. Lett. 74, 8, 1323 (1995).Google Scholar
29. Röthlisberger, U., Andreoni, W. and Giannozzi, P., J. Chem. Phys. 92, 1248 (1992).Google Scholar
30. Ho, K.M., Pan, B.C., Wang, C.Z., Wacker, J.G., Turner, D.E. and Deaven, D.M., to be printed in Phys. Rev. Lett. (1997).Google Scholar
31. Weich, F., Widany, J., Frauenheim, Th., Phys. Rev. Lett. 78 3326 (1997).Google Scholar
32. Liu, A.Y. & Cohen, M.L., Science 245 (1989) 841.Google Scholar
33. Zhang, Z.J., Huang, J., Fan, S., Lieber, C.M., Mater. Sci. and Eng. A 209 (1996) 5.Google Scholar
34. Hofsäss, H., Ronning, C., Griesmeier, U., Mat. Res. Soc. Symp. Proc. 354 (1995) 93.Google Scholar
35. Frauenheim, Th., Jungnickel, G., Köhler, Th., Stephan, U., J. Non-Cryst. Sol. 182 (1995) 186.Google Scholar
36. Drabold, D. A., Fedders, P. A., Stumm, P., Phys. Rev. B 49 (1994) 16415.Google Scholar
37. Elstner, M., Porezag, D., Jungnickel, G., Frauenheim, Th., Suhai, S., Seifert, G., submitted to PRL; and this volume. Google Scholar
38. Eisner, J., Haugk, M., Porezag, D., Jungnickel, G., Frauenheim, Th., subm. to Phys. Rev. B.Google Scholar
39. Elstner, M., Porezag, D., Jungnickel, G., Frauenheim, Th., Suhai, S., Seifert, G.,to be published, Phys. Rev. B, and this volume. Google Scholar
40. Andzelm, J., Wimmer, E., J. Chem. Phys. 96 1280 (1992).Google Scholar
41. Dewar, J. S., Zoebisch, E., Healy, E. F., Stewart, J. J. P., J. Am. Chem. Soc. 107 3902 (1985)Google Scholar
42. Santarsiero, B., J. Am. Chem. Soc. 112 9416 (1990).Google Scholar
43. Tajkhorsid, E., Elstner, M., Frauenheim, T., Suhai, S., to be published.Google Scholar
44. Haugk, M., Eisner, J., Frauenheim, Th., submitted to Phys. Rev. Lett.Google Scholar
45. Cho, A.Y. and Hayashi, I., Solid-state Electron 14, 125 (19971).Google Scholar
46. Arthur, R., Surf. Sci. 43, 449 (1974).Google Scholar
47. Biegelsen, D.K., Bringans, R.D., Northrup, J.E., and Schwartz, L.E., Phys. Rev. Lett. 65, 452 (1990).Google Scholar
48. Woolf, D. A., Westwood, D.I. and Williams, R.H., Appl. Phys. Lett. 62, 1371 (1993).Google Scholar
49. Kaxiras, E., Bar-Yam, Y., Joannopoulos, J.D., and Pandey, K.C., Phys. Rev. B 35 9636 (1987).Google Scholar
50. Qian, G.-X., Martin, R.M., and Chadi, D. J., Phys. Rev. B 38 7649 (1988).Google Scholar
51. Haugk, M., Eisner, J. and Frauenheim, Th., J. Phys. Condens. Matter 9, 7305 (1997).Google Scholar
52. Eisner, J., Jones, B., Sitch, P., Porezag, D., Elstner, M., Frauenheim, Th., Phys. Rev. Lett. (27-th October 1997).Google Scholar
53. Ponce, F. A., Bour, D. B., Gotz, W, and Wright, P. J., Appl. Phys. Lett. 68, 57 (1996).Google Scholar
54. Rosner, S. J., Carr, E. C., Ludowise, M. J., Girlami, G., and Erikson, H. I., Appl. Phys. Lett. 70, 420 (1997).Google Scholar
55. Jones, R.; Phil. Trans. Roy. Soc. Lond. A 1995, 350, 189.Google Scholar
56. Northrup, J. E., Neugebauer, J., and Romano, L.T., Phys. Rev. Lett. 77, 103 (1996).Google Scholar
57. Qian, W., Skowronski, M., Doverspike, K., Rowland, L. B., and Gaskill, D. K., J. Cryst. Growth, 151 396, (1995).Google Scholar
58. Northrup, J. E., and Neugebauer, J., Phys. Rev. B 53, 10477 (1996).Google Scholar
59. Eisner, J., Jones, R., Sitch, P.K., Porezag, D., Elstner, M., Frauenheim, Th., Heggie, M.I., Öberg, S. and Briddon, P.R., Phys. Rev. Lett. 79, 3672 (1997).Google Scholar
60. Liliental-Weber, Z., et al. to be published in the ICDS 19 proceedings (1997).Google Scholar
61. Neugebauer, J., and Van de Walle, C., Appl. Phys. Lett. 69, 503 (1996).Google Scholar