Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:37:22.819Z Has data issue: false hasContentIssue false

AFM Induced Local Oxidation of HOPG

Published online by Cambridge University Press:  14 March 2014

Kenichi Uki
Affiliation:
Advanced Device Laboratories and Department of Physics, Tokyo University of Science. Shinjuku, Tokyo 162-8601, Japan, Phone: +81-3-3260-4272
Mikihiro Kato
Affiliation:
Advanced Device Laboratories and Department of Physics, Tokyo University of Science. Shinjuku, Tokyo 162-8601, Japan, Phone: +81-3-3260-4272
Susumu Harako
Affiliation:
Advanced Device Laboratories and Department of Physics, Tokyo University of Science. Shinjuku, Tokyo 162-8601, Japan, Phone: +81-3-3260-4272
Xinwei Zhao*
Affiliation:
Advanced Device Laboratories and Department of Physics, Tokyo University of Science. Shinjuku, Tokyo 162-8601, Japan, Phone: +81-3-3260-4272
*
Get access

Abstract

AFM induced local anodic oxidation of HOPG was carried out in various conditions such as humidity, applied voltage and scan speed. A clear evidence of different oxidation features between HOPG and graphene has been confirmed and discussed.

These results should contribute to the progress of the micro/nano fabrication of graphene by the local anodic oxidation.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wallace, P.R., Phys. Rev. 71, 622634 (1947).CrossRefGoogle Scholar
Semenoff, Gordon W., Phys. Rev. Lett. 53, 24492452 (1984).CrossRefGoogle Scholar
DiVincenzo, D. P. and Mele, E. J., Phys. Rev. Lett. 53, 5255 (1984).CrossRefGoogle Scholar
Fujibayashi, Yoshiko, J. Phys. Soc. Jpn. 34 pp. 989993 (1973).CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I.V., and Firsov, A. A., Science 306, 666669 (2004).CrossRefGoogle Scholar
Geim, A. K., Novoselov, K. S., Nature Materials 6, 183191 (2007).CrossRefGoogle Scholar
Novoselov, K. S., Falko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G. and Kim, K., Nature 490, 192200 (2012).CrossRefGoogle Scholar
Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., Geim, A. K., Science 6 Vol. 320 no. 5881 p. 1308 (2008).CrossRefGoogle Scholar
Chen, Shanshan, Wu, Qingzhi, Mishra, Columbia, Kang, Junyong, Zhang, Hengji, Cho, Kyeongjae, Cai, Weiwei, Balandin, Alexander A. and Ruoff, Rodney S., Nature Materials 11, 203207 (2012).CrossRefGoogle Scholar
Bolotin, K.I., Sikes, K.J., Hone, J., Stormer, H.L., and Kim, P., Phys. Rev. Lett. 101, 096802 (2008).CrossRefGoogle Scholar
Lu, Gang, Zhou, Xiaozhu, Li, Hai, Yin, Zongyou, Li, Bing, Huang, Ling, Boey, Freddy, and Zhang, Hua, Langmuir, , 26(9), 61646166, (2010).CrossRefGoogle Scholar
Masubuchi, S., Arai, Miho and Machida, Tomoki, Nano Lett, 11, 45424546 (2011).CrossRefGoogle Scholar
Weng, Lishan, Zhang, Liyuan, Chen, Yong P., and Rokhinson, L. P., Appl. Phys. Lett. 93, 093107 (2008).CrossRefGoogle Scholar
Giesbers, A.J.M., Zeitler, U., Neubeck, S., Freitag, F., Novoselov, K.S., Maan, J.C., Solid State Communications 147 366369 (2008).CrossRefGoogle Scholar
Neubeck, Soeren, Freitag, Frank, Yang, Rui, and Novoselov, Kostya S., Phys. Status Solidi B 247, Nos. 11-12, 29042908 (2010).CrossRefGoogle Scholar
Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S., Cancado, L. G., Jorio, A. and Saito, R., Phys. Chem. Chem. Phys. 9, 12761291(2007).CrossRefGoogle Scholar
Ferrari, Andrea C. & Basko, Denis M., Nature Nanotechnology, 8, 235246, (2013).CrossRefGoogle Scholar