Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:50:05.612Z Has data issue: false hasContentIssue false

Ab-Initio Pseudopotential Calculations of Boron Diffusion in Silicon

Published online by Cambridge University Press:  10 February 2011

W. Windl
Affiliation:
Computational Materials Group, Motorola, Inc., M.S. B285, Los Alamos, NM 87545
M. M. Bunea
Affiliation:
Department of Physics, Boston University, Boston, MA
R. Stumpf
Affiliation:
Computational Materials Group, Motorola, Inc., M.S. B285, Los Alamos, NM 87545
S. T. Dunham
Affiliation:
Departmnent of Computer and Electrical Engineering, Boston University, Boston, MA
M. P. Masquelier
Affiliation:
Computational Materials Group, Motorola, Inc., M.S. B285, Los Alamos, NM 87545
Get access

Abstract

In this work we investigate boron diffusion as a function of the Fermi-level position in crystalline silicon using ab-initio calculations and the nudged elastic band method to optimize diffusion paths. Based on our results, a new mechanism for B diffusion mediated by Si self-interstitials is proposed. We find a two-step diffusion process for all Fermi-level positions, which suggests a kick-out with a directly following kick-in process without extensive B diffusion on interstitial sites in-between. Our activation energy of 3.47 – 3.75 eV and diffusion-length exponent of -0.55 to -0.18 eV are in excellent agreement with experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, e.g., “Defects and Diffusion in Silicon Processing”, ed. by Rubia, T. Diaz de la, Coffa, S., Stolk, P. A., and Rafferty, C. S. (Mater. Res. Proc. 469, Pittsburgh, PA 1997).Google Scholar
2. Ural, A., Griffin, P. B., and Plummer, J. D., J. Appl. Phys. 85, 6440 (1999).Google Scholar
3. Gösele, U., Plössl, A., and Tan, T. Y., in Process Physics and Modeling in Semiconductor Technology, edited by Srinivasan, G. R., Murthy, C. S., and Dunham, S. T. (Electro-chemical Society, Pennington, NJ, 1996), p. 309.Google Scholar
4. In this paper, we use “kick-out” and “kick-in” in the atomistic sense, i.e., for atoms migrating from substitutional to interstitial sites assisted by a Si2, and vice versa.Google Scholar
5. Nichols, C. S., Walle, C. G. Van de, and Pantelides, S. T., Phys. Rev. B 40, 5484 (1989).Google Scholar
6. Zhu, J., Rubia, T. Diaz de la, Yang, L. H., and Mailhiot, C., Phys. Rev. B 54, 4741 (1996).Google Scholar
7. Zhu, J., in “Defects and Diffusion in Silicon Processing”, ed. by Rubia, T. Diaz de la, Coffa, S., Stolk, P. A., and Rafferty, C. S. (Mater. Res. Proc. 469, Pittsburgh, PA 1997), p. 151.Google Scholar
8. Caturla, M.-J., Johnson, NI. D., Rubia, T. D. de la, Appl. Phys. Lett. 72, 2736 (1998).Google Scholar
9. Lilak, A. D., Law, NI. E., Jones, K. S., Giles, M. D., Andideh, E., Caturla, M.-J., Rubia, T. Diaz de la, Zhu, J., and Theiss, S., in Proc. IEDM, San Francisco, Dec. 1998, p. 493.Google Scholar
10. Bunea, M. and Dunham, S. T., in “Semiconductor Process and Device Performance Modeling”, ed. by Dunham, S. T. and Nelson, J. S. (Mater. Res. Proc. 490, Pittsburgh, PA 1998), p. 3.Google Scholar
11. Theiss, S. K., Caturla, M.-J., Rubia, T. Diaz de la, Johnson, M. D., Ural, A., and Griffin, P. B., in “Multiscale Modeling of Materials”, ed. by Rubia, T. Diaz de la, Kaxiras, T., Bulatov, V., Ghoniem, N. M., and Phillips, R. (Mater. Res. Proc. 538, Pittsburgh, PA 1999).Google Scholar
12. Perdew, J P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
13. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980); J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).Google Scholar
14. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990); G. Kresse and J. Hafner, J. Phys. Condensed Matter 6, 8245 (1994).Google Scholar
15. Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993); ibid. 49, 14251 (1994); G. Kresse and J. Furthmiiller, Comput. Mat. Sci. 6, 15 (1996); Phys. Rev. B 55, 11 169 (1996).Google Scholar
16. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B. 13, 5188 (1976).Google Scholar
17. Harrison, W. A., in “Defects and Diffusion in Silicon Processing”, ed. by Rubia, T. Diaz de la, Coffa, S., Stolk, P. A., and Rafferty, C. S. (Mater. Res. Proc. 469, Pittsburgh, PA 1997), p. 211.Google Scholar
18. Elber, R. and Karplus, M., Chem. Phys. Lett. 139, 375 (1987); E. M. Sevick, A. T. Bell, D. N. Theodorou, J. Chem. Phys. 98, 3196 (1993); H. Jonsson, G. Mills, K. W. Jacobsen, Enrico Fermi Summer School (Levici 1997) Proceedings.Google Scholar
19. In the following, GGA result will be denoted without, LDA results with parentheses.Google Scholar
20. For a review see Fahey, P. M., Griffin, P. B., and Plummer, J. D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
21. Folmer, B., Haddara, Y. M., and Law, M. E. (to be published).Google Scholar
22. Cowern, N. E. B., Walle, G. F. A. van de, Gravesteijn, D. J., and Vriezema, C. J., Phys. Rev. Lett. 67, 212 (1991).Google Scholar
23. Windl, W. (to be published).Google Scholar
24. Bracht, H., Stolwijk, N. A., and Mehrer, H., Phys. Rev. B 52, 16 542 (1995).Google Scholar