Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T08:50:52.591Z Has data issue: false hasContentIssue false

Ab initio Simulation of 1D Pattern Formation of Adsorbates on the Ge(100)-2 × 1 Surface

Published online by Cambridge University Press:  18 July 2013

Bonggeun Shong
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
Stacey F. Bent
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
Get access

Abstract

It is known that methanol and ethylene form distinct one-dimensional patterns along the dimer row on the Ge(100)-2 × 1 surface. A unified explanation for the pattern formation is attempted in this study through theoretical methods. Kinetic parameters of the precursor-mediated adsorption of the two molecules are calculated using density functional theory methods. The potential energy surface along the reaction channel was found to vary according to nearest-neighbor occupation. Monte Carlo simulations were performed with calculated kinetic coefficients and assumptions of a one-dimensional lattice with nearest neighbor interactions. The simulation results effectively reproduce the coverage-dependent evolution of longer-range adsorption patterns.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Otero, R., Gallego, J. M., Vázquez de Parga, A. L., Martín, N. and Miranda, R, Adv. Mater. 23(44), 5148 (2011).CrossRefGoogle Scholar
Bent, S. F., in Chemical Bonding at Surfaces and Interfaces, edited by Nilsson, A., Pettersson, L. G. M. and Nørskov, J. K. (Elsevier, Amsterdam, 2008), pp. 323395.CrossRefGoogle Scholar
Kim, A., Choi, D. S., Lee, J. Y. and Kim, S., J. Phys. Chem. B 108(10), 3256 (2004).CrossRefGoogle Scholar
Bae, S.-S., Kim, D. H., Kim, A., Jung, S. J., Hong, S. and Kim, S., J. Phys. Chem. C 111(41), 15013 (2007).CrossRefGoogle Scholar
Fink, A., Huber, R. and Widdra, W., J. Chem. Phys. 115(6), 2768 (2001).CrossRefGoogle Scholar
Kachian, J. S. and Bent, S. F., J. Am. Chem. Soc. 131(20), 7005 (2009).CrossRefGoogle Scholar
Chen, D. and Boland, J. J., Phys. Rev. Lett. 92(9), 096103 (2004).CrossRefGoogle Scholar
Widjaja, Y. and Musgrave, C. B., Surf. Sci. 469(1), 9 (2000).CrossRefGoogle Scholar
Frisch, M. J. et al. ., Gaussian 03, Revision D.01. (Gaussian, Inc., Wallingford, CT, 2003).Google Scholar
Taylor, P. A., Wallace, R. M., Cheng, C. C., Weinberg, W. H., Dresser, M. J., Choyke, W. J. and Yates, J. T. Jr., J. Am. Chem. Soc. 114(17), 6754 (1992).CrossRefGoogle Scholar
Yoshimoto, Y., Nakamura, Y., Kawai, H., Tsukada, M. and Nakayama, M., Phys. Rev. B 61(3), 1965 (2000).CrossRefGoogle Scholar
Hennies, F., Föhlisch, A., Wurth, W., Witkowski, N., Nagasono, M. and Piancastelli, M. N., Surf. Sci. 529(1–2), 144 (2003).CrossRefGoogle Scholar
Wang, Y. and Hwang, G. S., J. Chem. Phys. 122(16), 164706 (2005).CrossRefGoogle Scholar