Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:26:01.626Z Has data issue: false hasContentIssue false

0.1μm Interconnect Technology Challenges and the Sia Roadmap

Published online by Cambridge University Press:  15 February 2011

Tom Seidel
Affiliation:
Now at Genus, Sunnyvale, CA
Bin Zhao
Affiliation:
Now at Rockwell Semiconductor Systems, Newport Beach, CA
Sematech
Affiliation:
Now at Genus, Sunnyvale, CA
T X Austin
Affiliation:
Now at Genus, Sunnyvale, CA
Get access

Abstract

Analysis of the National Technology Roadmap for Semiconductors (SIA) indicates a potential crisis in performance and reliability regarding the scaling of interconnects. In the future, increased component density and performance (e.g. logic instructions / sec.) may not be able to be achieved simultaneously for technology generations well before the manufacture of 0.1μm feature sizes circa 2005. Thermal management and engineering of signal noise are key issues. Although much can be done to achieve higher speed with product design architecture, one must consider new material paradigms by 0. 1μm generation to address the RC crisis.

Needs exist in low cost simplified processes across a broad area of applications: local salicide interconnects, lower process temperature for poly-metal dielectric (to enable shallower junctions), lower dielectric constant materials for interconnects, and robust barriers for interconnect plugs and wiring metals. A shift to lower dielectric constant (low-k) materials (e.g. SiO-F, polymers, or aerogels) will be used as soon as integrated processes are demonstrated and manufacturing tools become available. The next full generation window of opportunity is the 0.18um generation (1GB) scheduled for manufacturing prototyping in 1998.

This paper reviews the overall Roadmap characteristics, major solution strategies, and outlines the challenges in design, technology, and integration for 0.18μm and 0.1μm generations. Topics reviewed include discussion of process architectures and electrical characterization methodologies. Among the most challenging areas we have: control and lowering of contact resistance, manufacturing interconnects at aspect ratios exceeding 4:1, use of very low dielectric constant materials in multilevel counts approaching 6–7, use of controllable ultra thin barrier materials for interconnect plugs and wiring, barriers and cladding for containment and passivation of Cu, development of manufacturing worthy selective processes, engineering stress/electromigration issues and thermal management of low-k dielectric systems. New materials must be introduced into existing technology frameworks while designs migrate to lower voltage operation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, 1994.Google Scholar
[2] Bohr, M. T., Technical Digest of International Electron Devices Meeting, 1995, p.241.Google Scholar
[3] Ting, C. H. and Seidel, T. E., Mater. Res. Soc. Symp. Proc., vol.381, p.3, 1995.Google Scholar
[4] Murarka, S. P. and Hymes, S. W., Critical Reviews in Solid State and Materials Sciences, vol.20, p.87, 1995.Google Scholar
[5] Sai-Halasz, G. A., Proc. IEEE, vol.83, p.20, 1995.Google Scholar
[6] Davidson, E. (IBM), private communication.Google Scholar
[7] Fisher, Phil (SEMATECH), private communication.Google Scholar
[8] Assembly and Packaging, The National Technology Roadmap for Semiconductors, p.132, Semiconductor Industry Association, 1994.Google Scholar
[9] Warwick, C. A. and Ourmazd, A., IEEE Trans. Semiconductor Manufacturing, vol.6, p.284, 1993.Google Scholar
[10] Kuhn, S. A., Kleiner, M. B., Ramm, P., and Weber, W., Technical Digest of International Electron Devices Meeting, 1995, p.249 Google Scholar
[11] Meindl, J. D., J. Vac. Sci. Technol. B, vol.14, p.192, 1996.Google Scholar
[12] Rahmat, K., Nakagawa, O. S., Oh, S.-Y., Moll, J., and Lynch, W. T., Technical Digest of International Electron Devices Meeting, 1995, p.245 Google Scholar
[13] Singer, P., Semiconductor International, vol.19, no.2, p.89, February, 1996.Google Scholar
[14] Zhao, B., Biberger, M. A., Hoffman, V., Wang, S.-Q., Vasudev, P. K., and Seidel, T. E., Symposium on VLSI Technology Digest of Technical Papers, 1996, p.72.Google Scholar
[15] Edelstein, D. C., Proceedings of VLSI Multilevel Interconnection Conference, 1995, p.301.Google Scholar
[16] Smith, P. M., Custer, J. S., Fleming, J. G., Osmun, E. R., Cohn, M., and Jones, R. V., Proceedings of VLSI Multilevel Interconnection Conference, 1996, p. 162.Google Scholar
[17] Dubin, V. M., Shacham-Diamand, Y., Zhao, B., Vasudev, P. K., and Ting, C. H.,, Proceedings of VLSI Multilevel Interconnection Conference, 1995, p. 315 Google Scholar
[18] Uttecht, R. R. and Geffken, R., Proceedings of VLSI Multilevel Interconnection Conference 1991, p. 20.Google Scholar
[19] Takewaki, T., Kaihara, R., Ohmi, T., and Nitta, T., Technical Digest of International Electron Devices Meeting, 1995, p. 253.Google Scholar
[20] Chatterjee, P. K., Hunter, W. R., Amerasekera, A., Aur, S., Duvvury, C., Nicollian, P. E., Ting, L. M., and Yang, P., Proceedings of IEEE International Reliability Physics, 1995, p. 1.Google Scholar
[21] Hunter, W. R., Technical Digest of International Electron Devices Meeting, 1995, p.483.Google Scholar
[22] Burggraaf, P., Semiconductor International, vol.18, no. 13, p.74, November, 1995.Google Scholar
[23] Anand, M., Yamada, M., and Shibata, H., 1996 Symposium on VLSI Technology Digest of Technical Papers, p.82, 1996.Google Scholar
[24] Zhao, B., Wang, S.-Q., Fiebig, M., Anderson, S., Vasudev, P. K., and Seidel, T. E., IEEE International Reliability Physics Proceedings, 1996, p. 156.Google Scholar
[25] Furusawa, T. and Homma, Y., Symposium on VLSI Technology Digest of Technical Papers, 1995, p.59.Google Scholar
[26] Dixit, G. A., Paranjpe, A., Hong, Q.-Z., Ting, L. M., Luttmer, J. D., and Havemann, R. H., Technical Digest of International Electron Devices Meeting, 1995, p. 1001.Google Scholar
[27] Waeterloos, J., Meynen, H., Coenegrachts, B., Grillaert, J., and Van den hove, L., Proceedings of Dielectrics for VLSI/ULSI Multilevel Interconnection Conference, 1996, p.52.Google Scholar
[28] Luther, B., White, J. F., Uzoh, C., Cacouris, T., Hummel, J., Guthrie, W., Lustig, N., Greco, S., Greco, N., Zuhoski, S., Agnello, P., Colgan, E., Mathad, S., Saraf, L., and Weitzman, E. J., Hu, C. K., Kaufman, F., Jaso, M., Buchwalter, L. P., Reynolds, S., Smart, C., Edelstein, D., Baran, E., Cohen, S., Knoedler, C. M., Malinowski, J., Horkans, J., Deligianni, H., Harper, J., Andricacos, P. C., Paraszczak, J., Pearson, D. J., Small, M., Proceedings of VLSI Multilevel Interconnection Conference, 1993, p. 15.Google Scholar
[29] Jin, C., Ting, L., Taylor, K., Seha, T., Luttmer, J. D., Proceedings of Dielectrics for VLSI/ULSI Multilevel Interconnection Conference, 1996, p. 21.Google Scholar
[30] Kotaki, H., Nakano, M., Hayashida, S., Matsuoka, T., Kakimoto, S., Nakano, A., Uda, K., and Sato, Y., Technical Digest of International Electron Devices Meeting, 1995, p.457.Google Scholar
[31] Kittl, J. A., Hong, Q.-Z., Rodder, M., Prinslow, D. A., and Misium, G. R., 1996 Symposium on VLSI Technology Digest of Technical Papers, 1996, p. 14.Google Scholar
[32] Ando, K., Matsubara, Y., Ishigami, T., Horiuchi, T., and Nishimoto, S., 1996 Symposium on VLSI Technology Digest of Technical Papers, 1996, p. 16.Google Scholar
[33] Southwell, R. P., Mendicino, M. A., Seebauer, E. G., J. Vac. Sci. Technol. A, vol.14, p.928, 1996.Google Scholar
[34] Ashburn, S. P., Grider, D. T., Ozturk, M. C., Harris, G., and Maher, D. M.,, Mater. Res. Soc. Symp. Proc., vol.320, p.311, 1994.Google Scholar