Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:35:04.134Z Has data issue: false hasContentIssue false

Ab-initio study on the γ-Al2O3 surfaces and interfaces.

Published online by Cambridge University Press:  01 February 2011

Henry P. Pinto
Affiliation:
NMRC, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland.
Simon D. Elliott
Affiliation:
NMRC, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland.
Get access

Abstract

The controlled growth of alumina films by atomic layer deposition (ALD) is of great interest to the electronics industry, as high-k dielectrics are being sought for the next-generation of MOSFETS. We present a theoretical study of the alumina polymorph γ-Al2O3 based on density functional theory (DFT). The predicted bulk structure for γ-Al2O3 has the Al vacancy sites widely separated, which is in agreement with other theoretical predictions. We estimated the energy of several γ-Al2O3 surfaces namely: (111), (110) and (110). The atomic and electronic structure of the most stable (111) surface is discussed and compared with α-Al2O3 (0001). The adsorption and dissociation of the H2O onto the (111) surface is considered and H-diffusion is simulated. Finally, a model for the γ-Al2O3 (111)/aluminium-hydroxide interface is proposed and considered as an intermediate stage in the γ-alumina film growth mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gutsche, M., Seidl, H., Hecht, T., Kudelka, S. and Schroeder, U., Future Fab Intl. 15, (2003).Google Scholar
2. Gusev, E. P., Copel, M., Cartier, E., Baumvol, I. J. R., Krug, C., and Gribelyuk, M. A., Appl. Phys. Lett. 76, 176 (2000)Google Scholar
3. Digne, M., Sautet, P., Raybaud, P., Toulhoat, H. and Artacho, E., J. Phys. Chem. B 106, 5155 (2002).Google Scholar
4. Streitz, F. H. and Mintmire, J. W., Phys. Rev. B 60, 773 (1999).Google Scholar
5. Gutiérrez, G., Taga, A., and Johansson, B., Phys. Rev. B 65, 012101 (2001).Google Scholar
6. Krokidis, X., Raybaud, P., Gobichon, A., Rebours, B., Euzen, P., and Toulhoat, H., J. Phys. Chem. B 105, 5121 (2001).Google Scholar
7. Pinto, H. P., Nieminen, R. M. and Elliott, S. D., Phys. Rev. B. (Submitted)Google Scholar
8. Liu, X. and Truitt, R. E., J. Am. Chem. Soc. 119, 9856 (1997).Google Scholar
9. Coster, D., Blumenfeld, A. L., and Fripiat, J. J., J. Phys. Chem. 98, 6201 (1994).Google Scholar
10. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
11. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
12. Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., and Fiolhais, C., Phys. Rev. B 46, 6671 (1992).Google Scholar
13. Kresse, G. and Furthmüller, J., Comput. Mater. Sci. 6, 15 (1996).Google Scholar
14. Fiorentini, V. and Methfessel, M., J. Phys. Condens. Matter 8, 6525 (1996)Google Scholar
15. Zhou, R. S. and Snyder, R. L., Acta Cryst. B 47, 617 (1991).Google Scholar
16. Yokokawa, T. and Kleppa, O. J., J. Phys. Chem. 68, 3246 (1964).Google Scholar
17. Yourdshahyan, Y., Enberg, U., Bengtsson, L., and Lundqvist, B. I., Phys. Rev. B 55, 8721 (1997).Google Scholar
18. Batyrev, I., Alavi, A., and Finnis, M. W., Faraday Discuss. 114, 33 (1999).Google Scholar
19. Suntola, T., Mater. Sci. Rep. 4, 261 (1989).Google Scholar
20. Ionescu, A., Allouche, A., Aycard, J-P, Rajzmann, M., Hutshka, F., J. Phys. Chem. B 106, 9359 (2002).Google Scholar