Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T16:24:07.197Z Has data issue: false hasContentIssue false

3D Printing Fumarate Based Polymers

Published online by Cambridge University Press:  20 January 2012

Kirsten N. Cicotte
Affiliation:
Organic Materials Department, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185, USA. Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131, USA.
Elizabeth L. Hedberg-Dirk
Affiliation:
Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131, USA. Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131, USA.
Shawn M. Dirk
Affiliation:
Organic Materials Department, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185, USA.
Get access

Abstract

Recently, an inexpensive 3D lithography technique was developed by Professor Nicholas Fang at the University of Illinois where a projector is used in combination with a Microsoft® PowerPoint presentation to expose the liquid negative-tone photoresist 1,6-hexanediol diacrylate in a layer-by-layer fashion. Where Professor Fang initially used this method as a teaching tool, we have used the inexpensive 3D printing technique to create 3D structures of fumarate based polymers. This class of polymers are liquids at room temperature which makes them ideal for the projector based lithography technique when used in combination with the photoinitiator bisphenyl(2,4,6-trimethylbenzoyl)-phosphine oxide (BAPO). Furthermore, the fumarate based materials are biocompatible and are suitable candidates for tissue engineering applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fisher, J. P., Holland, T. A., Dean, D., Engel, P. S. and Mikos, A. G., Journal of Biomaterials Science, Polymer Edition. 12(6), 673687 (2001).CrossRefGoogle Scholar
2.Hedberg, E. L., Shih, C.K., Lemoine, J.J., Timmer, M.D., Liebschner, M. A. K., Jansenand, J. A. Mikos, A. G., Biomaterials 26(16), 32153225 (2005).CrossRefGoogle Scholar
3.Hedberg, E. L., Tang, A., Crowther, R.S., Carneyand, D.H. Mikos, A.G., Journal of Controlled Release 84(3), 137150 (2002).CrossRefGoogle Scholar
4.Hsu, Y.Y., Gresser, J. D., Trantolo, D. J., Lyons, C. M., Gangadharam, P. R. J. and Wise, D. L., Journal of Biomedical Materials Research 35(1), 107116 (1997).3.0.CO;2-G>CrossRefGoogle Scholar
5.Cicotte, K. N., Hedberg-Dirk, E. L. and Dirk, S. M., Journal of Applied Polymer Science 117(4), 19841991 (2010).CrossRefGoogle Scholar
6.Cooke, M. N., Fisher, J. P., Dean, D., Rimnac, C. and Mikos, A. G., Journal of Biomedical Materials Research Part B, Applied Biomaterials 64(2), 6569 (2003).CrossRefGoogle Scholar
7.Hull, C. W., U.S. Patent 4,575,330 (Mar. 11, 1986 1986).CrossRefGoogle Scholar
8.Muskin, J., Ragusa, M. and Gelsthorpe, T., Journal of Chemical Education 87(5), 512514 (2010).CrossRefGoogle Scholar
9.Sun, C., Fang, N., Wu, D. M. and Zhang, X., Sensors and Actuators, A: Physical A121(1), 113120 (2005).CrossRefGoogle Scholar
10.Cicotte, K. N., Dirk, S. M. and Hedberg-Dirk, E. L., Materials Research Society Symposium Proceedings 1239 (Micro- and Nanoscale Processing of Biomaterials), Paper #: 1239-VV1205-1202 (2010).Google Scholar
11.Hedberg-Dirk, E. L., Cicotte, K. N. and Dirk, S. M., Materials Research Society Symposium Proceedings 1235 (Engineering Biomaterials for Regenerative Medicine), Paper #: 1235-RR1206-1208 (2009).Google Scholar